1
|
Liu P, Wang P, Wang N, Sun X, Ding Y, Zhang G, Li M, Chen X. Establishment of a pMCAO model in SD rats and screening for behavioral indicators suitable for long-term monitoring. Brain Inj 2024; 38:716-726. [PMID: 38661324 DOI: 10.1080/02699052.2024.2346804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE This study aimed to establish a permanent middle cerebral artery occlusion (pMCAO) model in rats to simulate the pathological process of stroke patients with no reperfusion. And screen highly sensitive items that could be used to detect long-term behavioral abilities in rat of intraluminal suture models. METHOD Established the pMCAO model then tested the rats for the bilateral asymmetry, modified neurological severity score, grid-walking, cylinder, rotating, and water maze test from week 1 to week 16. RESULTS The infarct volume of the model rats was stable (26.72% ±1.86%). The sensorimotor test of bilateral asymmetry, grid-walking, cylinder, and mNSS test showed significant differences from week 1 to week 16 after injury. The water maze test at week 16 showed significant differences in spatial exploration and learning ability between the two groups. We confirmed that there was no significant difference between MRI and TTC staining in detecting the degree of brain injury, which facilitated the diversity of subsequent detection methods. We also confirmed that at multiple time points, grid, cylinder and water maze test were significantly positively correlated with rat brain infarct volume. CONCLUSION They are suitable for the long-term observation of behaviors in the sequela stage of stroke in rat.
Collapse
Affiliation(s)
- Peng Liu
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Peipei Wang
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
| | - Nan Wang
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
| | - Xiaodong Sun
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
| | - Yingying Ding
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
| | - Guirong Zhang
- Department of R & D of New Drugs for Neural Stem Cells, Yinfeng Biological Group. LTD, Jinan, China
| | - Mingyue Li
- Department of R & D of New Drugs for Neural Stem Cells, Yinfeng Biological Group. LTD, Jinan, China
| | - Xiaowei Chen
- Pharmacology and Efficacy department for Neural Stem Cells drug research, Beijing Yinfeng Dingcheng Biological Engineering Technology Limited Liability Company, Beijing, China
| |
Collapse
|
2
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023; 11:2617. [PMID: 37892991 PMCID: PMC10604797 DOI: 10.3390/biomedicines11102617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Among the high prevalence of cerebrovascular diseases nowadays, acute ischemic stroke stands out, representing a significant worldwide health issue with important socio-economic implications. Prompt diagnosis and intervention are important milestones for the management of this multifaceted pathology, making understanding the various stroke-onset symptoms crucial. A key role in acute ischemic stroke management is emphasizing the essential role of a multi-disciplinary team, therefore, increasing the efficiency of recognition and treatment. Neuroimaging and neuroradiology have evolved dramatically over the years, with multiple approaches that provide a higher understanding of the morphological aspects as well as timely recognition of cerebral artery occlusions for effective therapy planning. Regarding the treatment matter, the pharmacological approach, particularly fibrinolytic therapy, has its merits and challenges. Endovascular thrombectomy, a game-changer in stroke management, has witnessed significant advances, with technologies like stent retrievers and aspiration catheters playing pivotal roles. For select patients, combining pharmacological and endovascular strategies offers evidence-backed benefits. The aim of our comprehensive study on acute ischemic stroke is to efficiently compare the current therapies, recognize novel possibilities from the literature, and describe the state of the art in the interdisciplinary approach to acute ischemic stroke. As we aspire for holistic patient management, the emphasis is not just on medical intervention but also on physical therapy, mental health, and community engagement. The future holds promising innovations, with artificial intelligence poised to reshape stroke diagnostics and treatments. Bridging the gap between groundbreaking research and clinical practice remains a challenge, urging continuous collaboration and research.
Collapse
Affiliation(s)
- Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania;
- Neurosurgery Department, “Lucian Blaga” University of Medicine, 550024 Sibiu, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020022 Bucharest, Romania
| | - Horia Ples
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babes” University of Medicine and Pharmacy, 300736 Timisoara, Romania
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
4
|
Oto OA, Atwood DJ, Chaudhary A, He Z, Li AS, Wempe MF, Edelstein CL. Metformin does not slow cyst growth in the PCK rat model of polycystic kidney disease. Physiol Rep 2023; 11:e15776. [PMID: 37653564 PMCID: PMC10471794 DOI: 10.14814/phy2.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Metformin (MET) has the potential to activate p-AMPK and block mTORC1-induced proliferation of tubular cells in PKD kidneys. The aim of this study was to determine the effects of MET on cyst growth, kidney function, AMPK and mTOR signaling, and lactate levels in male PCK rats, a Pkhd1 gene mutation model of human autosomal recessive polycystic kidney disease (ARPKD). MET 300 mg/kg/day IP from days 28 to 84 of age resulted in a mean serum metformin level that was 10 times the upper limit of therapeutic, no effect on cyst indices, nephrotoxicity, and increased serum lactate. MET 150 mg/kg resulted in a therapeutic serum metformin level but had no effect on kidney weight, cyst indices, kidney function, or mTOR and autophagy proteins. In summary, a standard dose of MET was ineffective in reducing PKD, did not activate p-AMPK or suppress mTOR and the higher dose resulted in increased lactate levels and nephrotoxicity. In conclusion, the study dampens enthusiasm for human studies of MET in PKD. Doubling the metformin dose resulted in a 10-fold increase in mean blood levels and toxicity suggesting that the dosage range between therapeutic and toxic is narrow.
Collapse
Affiliation(s)
- Ozgur A. Oto
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel J. Atwood
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anjana Chaudhary
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Zhibin He
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Amy S. Li
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Charles L. Edelstein
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
5
|
Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, Villalba H, Abbruscato T. Permeability of Metformin across an In Vitro Blood-Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023; 15:pharmaceutics15051357. [PMID: 37242599 DOI: 10.3390/pharmaceutics15051357] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
6
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
7
|
Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP-2 and MMP-9 Pathways. Pharmaceuticals (Basel) 2023; 16:ph16030442. [PMID: 36986541 PMCID: PMC10057436 DOI: 10.3390/ph16030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Anethole (AN) is one of the major constituents of several plant oils, demonstrating plentiful pharmacological actions. Ischemic stroke is the main cause of morbidity and death worldwide, particularly since ischemic stroke therapeutic choices are inadequate and limited; thus, the development of new therapeutic options is indispensable. This study was planned to explore the preventive actions of AN in ameliorating cerebral ischemia/reperfusion-induced brain damage and BBB permeability leakage, as well as to explore anethole’s potential mechanisms of action. The proposed mechanisms included modulating JNK and p38 as well as MMP-2 and MMP-9 pathways. Sprague–Dawley male rats were randomly assigned into four groups: sham, middle cerebral artery occlusion (MCAO), AN125 + MCAO, and AN250 + MCAO. Animals in the third and fourth groups were pretreated with AN 125 or 250 mg/kg orally, respectively, for two weeks before performing middle cerebral artery occlusion (MCAO)-induced cerebral ischemic/reperfusion surgery. Animals that experienced cerebral ischemia/reperfusion exhibited amplified infarct volume, Evans blue intensity, brain water content, Fluoro-Jade B-positive cells, severe neurological deficits, and numerous histopathological alterations. MCAO animals exhibited elevated MMP-9 and MMP-2 gene expressions, enzyme activities, augmented JNK, and p38 phosphorylation. On the other hand, pretreatment with AN diminished the infarct volume, Evans blue dye intensity, brain water content, and Fluoro-Jade B-positive cells, improved the neurological score and enhanced histopathological examination. AN effectively lowered MMP-9 and MMP-2 gene expression and enzyme activities and diminished phosphorylated JNK, p38. AN decreased MDA content, amplified GSH/GSSG ratio, SOD, and CAT, decreased the serum and brain tissue homogenate inflammatory cytokines (TNF-α, IL-6, IL-1β), NF-κB, and deterred the apoptotic status. This study revealed the neuroprotective ability of AN against cerebral ischemia/reperfusion in rats. AN boosted blood–brain barrier integrity via modulating MMPs and diminished oxidative stress, inflammation, and apoptosis through the JNK/p38 pathway.
Collapse
Affiliation(s)
- Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Naseri A, Sanaie S, Hamzehzadeh S, Seyedi-Sahebari S, Hosseini MS, Gholipour-Khalili E, Rezazadeh-Gavgani E, Majidazar R, Seraji P, Daneshvar S, Rezazadeh-Gavgani E. Metformin: new applications for an old drug. J Basic Clin Physiol Pharmacol 2023; 34:151-160. [PMID: 36474458 DOI: 10.1515/jbcpp-2022-0252] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Metformin is a biguanide, evolved as one of the most widely used medicines. The applications of this component include but are not limited to reducing blood glucose, weight loss, and polycystic ovary syndrome. Studies about other probable indications have emerged, indicating that this agent can also be utilized for other purposes. In this review, applications of metformin are noticed based on the current evidence. Metformin commonly is used as an off-label drug in non-alcoholic fatty liver disease (NAFLD), but it worsens inflammation and should not be used for this purpose, according to the latest research. Metformin decreased the risk of death in patients with liver cirrhosis. It is an effective agent in the prevention and improvement of survival in patients suffering hepatocellular carcinoma. There is evidence of the beneficial effects of metformin in colorectal cancer, early-stage prostate cancer, breast cancer, urothelial cancer, blood cancer, melanoma, and bone cancer, suggesting metformin as a potent anti-tumor agent. Metformin shows neuroprotective effects and provides a potential therapeutic benefit for mild cognitive impairment and Alzheimer's disease (AD). It also has been shown to improve mental function and reduce the incidence of dementia. Another condition that metformin has been shown to slow the progression of is Duchenne muscular dystrophy. Regarding infectious diseases, tuberculosis (TB) and coronavirus disease (COVID-19) are among the conditions suggested to be affected by metformin. The beneficial effects of metformin in cardiovascular diseases were also reported in the literature. Concerning renal function, studies showed that daily oral administration of metformin could ameliorate kidney fibrosis and normalize kidney structure and function. This study reviewed the clinical and preclinical evidence about the possible benefits of metformin based on recent studies. Numerous questions like whether these probable indications of metformin can be observed in non-diabetics, need to be described by future basic experiments and clinical studies.
Collapse
Affiliation(s)
- Amirreza Naseri
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Hamzehzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Ehsan Rezazadeh-Gavgani
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Seraji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Daneshvar
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Yao M, Hao Y, Wang T, Xie M, Li H, Feng J, Feng L, Ma D. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy. Front Neurol 2023; 14:1149671. [PMID: 37025208 PMCID: PMC10070880 DOI: 10.3389/fneur.2023.1149671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.
Collapse
Affiliation(s)
- Mengyue Yao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Wang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meizhen Xie
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liangshu Feng
- Stroke Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
- Liangshu Feng
| | - Di Ma
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Di Ma
| |
Collapse
|
10
|
Metformin Acutely Mitigates Oxidative Stress in Human Atrial Tissue: A Pilot Study in Overweight Non-Diabetic Cardiac Patients. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122058. [PMID: 36556423 PMCID: PMC9785172 DOI: 10.3390/life12122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Metformin, the first-line drug in type 2 diabetes mellitus, elicits cardiovascular protection also in obese patients via pleiotropic effects, among which the anti-oxidant is one of the most investigated. The aim of the present study was to assess whether metformin can acutely mitigate oxidative stress in atrial tissue harvested from overweight non-diabetic patients. Right atrial appendage samples were harvested during open-heart surgery and used for the evaluation of reactive oxygen species (ROS) production by means of confocal microscopy (superoxide anion) and spectrophotometry (hydrogen peroxide). Experiments were performed after acute incubation with metformin (10 µM) in the presence vs. absence of angiotensin II (AII, 100 nM), lipopolysaccharide (LPS, 1 μg/mL), and high glucose (Gluc, 400 mg/dL). Stimulation with AII, LPS, and high Gluc increased ROS production. The magnitude of oxidative stress correlated with several echocardiographic parameters. Metformin applied in the lowest therapeutic concentration (10 µM) was able to decrease ROS generation in stimulated but also non-stimulated atrial samples. In conclusion, in a pilot group of overweight non-diabetic cardiac patients, acute incubation with metformin at a clinically relevant dose alleviated oxidative stress both in basal conditions and conditions that mimicked the activation of the renin-angiotensin-aldosterone system, acute inflammation, and uncontrolled hyperglycemia.
Collapse
|
11
|
Fu W, Tang Y, Che X, Tan J, Ma Y, He Z. Neuropharmacological efficacy of metformin for stroke in rodents: A meta-analysis of preclinical trials. Front Pharmacol 2022; 13:1009169. [PMID: 36408248 PMCID: PMC9669075 DOI: 10.3389/fphar.2022.1009169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
Background: Stroke, including ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage (SAH), remains a leading cause of mortality globally. Different stroke subtypes have similar detrimental effects in multiple fields of health. Previous research has shown that metformin plays a neuroprotective role in experimental animal models of stroke; however, a preclinical quantitative analysis on the ability of metformin to treat stroke is still lacking. This meta-analysis evaluates the efficacy of metformin in improving stroke prognosis in rodent models of stroke. Methods: Relevant preclinical trials were retrieved from PubMed, EMBASE, and the Web of Science. The neurological score (NS), brain water content (BWC), infarct size, rotarod test, TUNEL, neuron quantity, microglia quantity, and p-AMPK levels were compared between a control group and a metformin group using the standardized mean difference (SMD) and corresponding confidence interval (CI). Quality was assessed with SYRCLE's risk of bias tool. Results: Fifteen articles published from 2010 to 2022 were included in the meta-analysis. The metformin group had statistically significant differences compared to the control group in the following aspects: NS (SMD -1.45; 95% CI -2.32, -0.58; p = 0.001), BWC (SMD -3.22; 95% CI -4.69, -1.76; p < 0.0001), infarct size (SMD -2.90; 95% CI -3.95, -1.85; p < 0.00001), rotarod test (SMD 2.55; 95% CI 1.87, 3.23; p < 0.00001), TUNEL (SMD -3.63; 95% CI -5.77, -1.48; p = 0.0009), neuron quantity (SMD 3.42; 95% CI 2.51, 4.34; p < 0.00001), microglia quantity (SMD -3.06; 95% CI -4.69, -1.44; p = 0.0002), and p-AMPK levels (SMD 2.92; 95% CI 2.02, 3.82; p < 0.00001). Furthermore, sensitivity analysis and stratified analysis were conducted for heterogeneous outcome indicators. Conclusion: Overall, metformin treatment improves severe outcomes triggered by stroke. Despite the limitations intrinsic to animal studies, this systematic review may provide a vital reference for future high-quality preclinical trials and clinical use.
Collapse
Affiliation(s)
- Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Che
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhang G, Chen S, Jia J, Liu C, Wang W, Zhang H, Zhen X. Development and Evaluation of Novel Metformin Derivative Metformin Threonate for Brain Ischemia Treatment. Front Pharmacol 2022; 13:879690. [PMID: 35800435 PMCID: PMC9253272 DOI: 10.3389/fphar.2022.879690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Epidemiologic data reveal that diabetes patients taking metformin exhibit lower incidence of stroke and better functional outcomes during post-stroke neurologic recovery. We previously demonstrated that chronic post-ischemic administration of metformin improved functional recovery in experimental cerebral ischemia. However, few beneficial effects of metformin on the acute phase of cerebral ischemia were reported either in experimental animals or in stroke patients, which limits the application of metformin in stroke. We hypothesized that slow cellular uptake of metformin hydrochloride may contribute to the lack of efficacy in acute stroke. We recently developed and patented a novel metformin derivative, metformin threonate (SHY-01). Pharmacokinetic profile in vivo and in cultured cells revealed that metformin is more rapidly uptaken and accumulated from SHY-01 than metformin hydrochloride. Accordingly, SHY-01 treatment exhibited more potent and rapid activation of AMP-activated protein kinase (AMPK). Furthermore, SHY-01 elicited a stronger inhibition of microglia activation and more potent neuroprotection when compared to metformin hydrochloride. SHY-01 administration also had superior beneficial effects on neurologic functional recovery in experimental stroke and offered strong protection against acute cerebral ischemia with reduced infarct volume and mortality, as well as the improved sensorimotor and cognitive functions in rats. Collectively, these results indicated that SHY-01 had an improved pharmacokinetic and pharmacological profile and produced more potent protective effects on acute stroke and long-term neurological damage. We propose that SHY-01 is a very promising therapeutic candidate for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Gufang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- *Correspondence: Xuechu Zhen, ; Gufang Zhang,
| | - Shuangshuang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongjian Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- *Correspondence: Xuechu Zhen, ; Gufang Zhang,
| |
Collapse
|
13
|
Yu M, Zheng X, Cheng F, Shao B, Zhuge Q, Jin K. Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Front Neurol 2022; 13:903565. [PMID: 35769369 PMCID: PMC9234123 DOI: 10.3389/fneur.2022.903565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second leading form of dementia after Alzheimer's disease (AD) plaguing the elder population. Despite the enormous prevalence of VCI, the biological basis of this disease has been much less well-studied than that of AD, with no specific therapy currently existing to prevent or treat VCI. As VCI mainly occurs in the elderly, the role of anti-aging drugs including metformin, rapamycin, and nicotinamide mono nucleotide (NMN), and the underlying mechanism remain uncertain. Here, we examined the role of metformin, rapamycin, and NMN in cognitive function, white matter integrity, microglial response, and phagocytosis in a rat model of VCI by bilateral common carotid artery occlusion (BCCAO). BCCAO-induced chronic cerebral hypoperfusion could cause spatial working memory deficits and white matter lesions (WMLs), along with increasing microglial activation and phagocytosis compared to sham-operated rats. We found the cognitive impairment was significantly improved in BCCAO rats pretreated with these three drugs for 14 days before BCCAO compared with the vehicle group by the analysis of the Morris water maze and new object recognition tests. Pretreatment of metformin, rapamycin, or NMN also increased myelin basic protein (MBP, a marker for myelin) expression and reduced SMI32 (a marker for demyelinated axons) intensity and SMI32/MBP ratio compared with the vehicle group, suggesting that these drugs could ameliorate BCCAO-induced WMLs. The findings were confirmed by Luxol fast blue (LFB) stain, which is designed for staining myelin/myelinated axons. We further found that pretreatment of metformin, rapamycin, or NMN reduced microglial activation and the number of M1 microglia, but increased the number of M2 microglia compared to the vehicle group. Importantly, the number of MBP+/Iba1+/CD68+ microglia was significantly reduced in the BCCAO rats pretreated with these three drugs compared with the vehicle group, suggesting that these drugs suppress microglial phagocytosis. No significant difference was found between the groups pretreated with metformin, rapamycin, or NMN. Our data suggest that metformin, rapamycin, or NMN could protect or attenuate cognitive impairment and WMLs by modifying microglial polarization and inhibiting phagocytosis. The findings may open a new avenue for VCI treatment.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fangyu Cheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Qichuan Zhuge
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- Kunlin Jin
| |
Collapse
|
14
|
Frank D, Zlotnik A, Boyko M, Gruenbaum BF. The Development of Novel Drug Treatments for Stroke Patients: A Review. Int J Mol Sci 2022; 23:5796. [PMID: 35628606 PMCID: PMC9145977 DOI: 10.3390/ijms23105796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute ischemic stroke is a critical condition that can result in disability and death. The consequences of this medical condition depend on various factors, including the size of the stroke, affected brain region, treatment onset, and the type of treatment. The primary objective of stroke treatment is to restart ischemic penumbra tissue perfusion and reduce infarct volume by sustaining blood flow. Recent research on the condition's pathological pathways and processes has significantly improved treatment options beyond restoring perfusion. Many studies have concentrated on limiting injury severity via the manipulation of molecular mechanisms of ischemia, particularly in animal research. This article reviews completed and ongoing research on the development of acute ischemic stroke drugs. This study focuses on three main categories of antithrombotic drugs, thrombolytic drugs, and neuroprotective agents. The paper outlines findings from animal and clinical trials and explores the working mechanisms of these drugs.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel; (A.Z.); (M.B.)
| | | |
Collapse
|
15
|
Zemgulyte G, Umbrasas D, Cizas P, Jankeviciute S, Pampuscenko K, Grigaleviciute R, Rastenyte D, Borutaite V. Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats-a Study Evaluating Neuroinflammation and Mitochondrial Functions. Mol Neurobiol 2022; 59:2977-2991. [PMID: 35257284 DOI: 10.1007/s12035-022-02765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
Imeglimin is a novel oral antidiabetic drug modulating mitochondrial functions. However, neuroprotective effects of this drug have not been investigated. The aim of this study was to investigate effects of imeglimin against ischemia-induced brain damage and neurological deficits and whether it acted via inhibition of mitochondrial permeability transition pore (mPTP) and suppression of microglial activation. Ischemia in rats was induced by permanent middle cerebral artery occlusion (pMCAO) for 48 h. Imeglimin (135 μg/kg/day) was injected intraperitoneally immediately after pMCAO and repeated after 24 h. Immunohistochemical staining was used to evaluate total numbers of neurons, astrocytes, and microglia as well as interleukin-10 (IL-10) producing cells in brain slices. Respiration of isolated brain mitochondria was assessed using high-resolution respirometry. Assessment of ionomycin-induced mPTP opening in intact cultured primary rat neuronal, astrocytic, and microglial cells was performed using fluorescence microscopy. Treatment with imeglimin significantly decreased infarct size, brain edema, and neurological deficits after pMCAO. Moreover, imeglimin protected against pMCAO-induced neuronal loss as well as microglial proliferation and activation, and increased the number of astrocytes and the number of cells producing anti-inflammatory cytokine IL-10 in the ischemic hemisphere. Imeglimin in vitro acutely prevented mPTP opening in cultured neurons and astrocytes but not in microglial cells; however, treatment with imeglimin did not prevent ischemia-induced mitochondrial respiratory dysfunction after pMCAO. This study demonstrates that post-stroke treatment with imeglimin exerts neuroprotective effects by reducing infarct size and neuronal loss possibly via the resolution of neuroinflammation and partly via inhibition of mPTP opening in neurons and astrocytes.
Collapse
Affiliation(s)
- Gintare Zemgulyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania.
| | - Danielius Umbrasas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Paulius Cizas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Silvija Jankeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Katryna Pampuscenko
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological research center, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181, Kaunas, Lithuania
| | - Daiva Rastenyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| |
Collapse
|
16
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
17
|
Yu X, Fu X, Wu X, Tang W, Xu L, Hu L, Xu C, Zhou H, Zhou G, Li J, Cao S, Liu J, Yan F, Wang L, Liu F, Chen G. Metformin Alleviates Neuroinflammation Following Intracerebral Hemorrhage in Mice by Regulating Microglia/Macrophage Phenotype in a Gut Microbiota-Dependent Manner. Front Cell Neurosci 2022; 15:789471. [PMID: 35115909 PMCID: PMC8806158 DOI: 10.3389/fncel.2021.789471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
The gut microbiota plays a key role in regulating intracerebral hemorrhage (ICH)-induced neuroinflammation. The anti-neuroinflammatory effects of metformin (Met) have been reported in many central nervous system (CNS) diseases. However, whether Met regulates neuroinflammation through the gut microbiota in ICH-induced brain injury remains unknown. We found that Met treatment substantially alleviated neurological dysfunction and reduced neuroinflammation by inhibiting pro-inflammatory polarization of microglia/macrophages in mice with ICH. Moreover, Met treatment altered the microbiota composition and improved intestinal barrier function. The expression of lipopolysaccharide-binding protein (LBP), a biomarker of intestinal barrier damage, was also significantly reduced by Met treatment. Neuroinflammation was also potently ameliorated after the transplantation of fecal microbiota from Met-treated ICH mice. The neuroprotective effects of fecal microbiota transplantation (FMT) were similar to those of oral Met treatment. However, suppression of the gut microbiota negated the neuroprotective effects of Met in ICH mice. Therefore, Met is a promising therapeutic agent for neuroinflammation owing to ICH-induced imbalance of the gut microbiota.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Tang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu Gao Chen
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu Gao Chen
| |
Collapse
|
18
|
Effects of Metformin on Spontaneous Ca 2+ Signals in Cultured Microglia Cells under Normoxic and Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms22179493. [PMID: 34502402 PMCID: PMC8430509 DOI: 10.3390/ijms22179493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.
Collapse
|