1
|
Yan P, Tian Y, Li X, Li S, Wu H, Wang T. Identification of Copper Homeostasis-Related Gene Signature for Predicting Prognosis in Patients with Epithelial Ovarian Cancer. Cancer Inform 2024; 23:11769351241272400. [PMID: 39139301 PMCID: PMC11320685 DOI: 10.1177/11769351241272400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives This research aims to establish a copper homeostasis-related gene signature for predicting the prognosis of epithelial ovarian cancer and to investigate its underlying mechanisms. Methods We mainly constructed the copper homeostasis-related gene signature by LASSO regression analysis. Then multiple methods were used to evaluate the independent predictive ability of the model and explored the mechanisms. Results The 15-copper homeostasis-related gene (15-CHRG) signature was successfully established. Utilizing an optimal cut-off value of 0.35, we divided the training dataset into high-risk and low-risk subgroups. Kaplan-Meier analysis revealed that survival times for the high-risk subgroup were significantly shorter than those in the low-risk group (P < .05). Additionally, the Area Under the Curve (AUC) of the 15-CHRG signature achieved 0.822 at 1 year, 0.762 at 3 years, and 0.696 at 5 years in the training set. COX regression analysis confirmed the 15-CHRG signature as both accurate and independent. Gene set enrichment (GSEA), Kyoto Encyclopedia of Gene and Genome (KEGG) and Gene Ontology (GO) analysis showed that there were significant differences in apoptosis, p53 pathway, protein synthesis, hydrolase and transport-related pathways between high-risk group and low-risk group. In tumor immune cell (TIC) analysis, the increased expression of resting mast cells was positively correlated with the risk score. Conclusion Consequently, the 15-CHRG signature shows significant potential as a method for accurately predicting clinical outcomes and treatment responses in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Ping Yan
- Department of General Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojing Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuangmei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
4
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
6
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
7
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
8
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
9
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
10
|
Chen J, Yu X, Tong H, Tang C, Tang Z. Establishment and experimental validation of a novel cuproptosis-related gene signature for prognostic implication in cholangiocarcinoma. Front Oncol 2022; 12:1054063. [PMID: 36568224 PMCID: PMC9773249 DOI: 10.3389/fonc.2022.1054063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a highly malignant, heterogeneous bile duct malignancy with poor treatment options. A novel type of cell death termed cuproptosis was recently demonstrated to closely correlate with tumor progression. To gain more insight into the role of cuproptosis in CCA, we investigated the prognostic implications of cuproptosis related genes (CRGs) and their relationship to the development of CCA. Methods Gene expression data for CCA were obtained from the European Bioinformatics Institute (EMBL-EBI) database. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression was used to construct a prognostic risk model based on CRGs. RNA-seq, qRT-PCR and immunohistochemistry staining were used to verify the expression of CRGs in human CCA tissues or cell lines. Further in vitro experiments were performed to demonstrate the role of cuproptosis in CCA. Results We established a 4-gene signature (ATP7A, FDX1, DBT and LIAS) that exhibited good stability and was an independent prognostic factor for CCA. Seventy-five CCA samples were divided into high- and low-risk groups based on the risk score. Enrichment analysis revealed increased extracellular activity in the high-risk group and increased lipid metabolic activity in the low-risk group. Moreover, the 4 signature genes were verified in clinical samples and cell lines by RNA-seq, qRT-PCR and immunohistochemistry. Further experiments confirmed that cuproptosis can significantly inhibit the viability of CCA cells. Knockdown of the key gene LIAS ameliorated the toxicity of cuproptosis to CCA cells. Conclusion We established a 4-gene prognostic signature based on cuproptosis and explored the role of cuproptosis in CCA. The results provide an effective indicator for predicting the prognosis of cuproptosis in CCA.
Collapse
|
11
|
Chen F, Zhang F, Wang Y, Peng J, Cao L, Mei Q, Ge M, Li L, Chen M, Dong WF, Chang Z. Biomimetic Redox-Responsive Mesoporous Organosilica Nanoparticles Enhance Cisplatin-Based Chemotherapy. Front Bioeng Biotechnol 2022; 10:860949. [PMID: 35372319 PMCID: PMC8966698 DOI: 10.3389/fbioe.2022.860949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin-based chemotherapy is dominated in several cancers; however, insufficient therapeutic outcomes and systemic toxicity hamper their clinical applications. Controlled release of cisplatin and reducing inactivation remains an urgent challenge to overcome. Herein, diselenide-bridged mesoporous organosilica nanoparticles (MON) coated with biomimetic cancer cell membrane were tailored for coordination responsive controlled cisplatin delivery and GSH depletion to strengthen Pt-based chemotherapy. Cisplatin-loaded MON (MON-Pt) showed high loading capacity due to robust coordination between selenium and platinum atoms and preventing premature leakage in normal tissue. MON-Pt exhibited a controlled release of activated cisplatin in response to the redox tumor microenvironment. Meanwhile, MON-Pt containing redox-responsive diselenide bonds could efficiently scavenge intracellular inactivation agents, such as GSH, to enhance Pt-based chemotherapy. 4T1 breast cancer cell membranes cloaked MON-Pt (MON-Pt@CM) performed efficient anticancer performance and low in vivo system toxicity due to long blood circulation time and high tumor accumulation benefiting from the tumor targeting and immune-invasion properties of the homologic cancer cell membrane. These results suggest a biomimetic nanocarrier to control release and reduce the inactivation of cisplatin for efficient and safe Pt-based chemotherapy by responding and regulating the tumor microenvironment.
Collapse
Affiliation(s)
- Fangman Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Yanbin Wang
- Nephrology Department of the Fourth Affiliated Hospital of XinJiang Medical University, Macau, China
| | - Jiahui Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Qian Mei
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Mingfeng Ge
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wen-fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Wen-fei Dong, ; Zhimin Chang,
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Wen-fei Dong, ; Zhimin Chang,
| |
Collapse
|
12
|
Che L, Wu JS, Du ZB, He YQ, Yang L, Lin JX, Lei Z, Chen XX, Guo DB, Li WG, Lin YC, Lin ZN. Targeting Mitochondrial COX-2 Enhances Chemosensitivity via Drp1-Dependent Remodeling of Mitochondrial Dynamics in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030821. [PMID: 35159089 PMCID: PMC8834292 DOI: 10.3390/cancers14030821] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary New therapeutic strategies are urgently needed to improve the anti-cancer effect for hepatocellular carcinoma (HCC). Overexpression of cyclooxygenase-2 (COX-2) is found in several types of cancers and correlates with a poor prognosis. However, it remains unclear how the mitochondrial translocation of COX-2 is involved in mitochondrial dynamics and sensitizes HCC cells to multipattern anti-tumor therapy. We explored the impact of targeting mitochondrial COX-2 (mito-COX-2) intervention toward mitochondrial dynamics on platinum-based chemotherapeutics in HCC cells and xenograft nude mouse models. Our study indicates that the mito-COX-2 represents a candidate predictive biomarker and potential target to regulate anti-cancer sensitization of HCC, and possibly for other types of COX-2-high-expression cancers. Abstract Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis. However, the roles played by the translocation of mitochondrial COX-2 (mito-COX-2) and the interaction between mito-COX-2 and Drp1 in chemotherapeutic responses remain to be elucidated in the context of HCC. Bioinformatics analysis, paired HCC patient specimens, xenograft nude mice, immunofluorescence, transmission electron microscopy, molecular docking, CRISPR/Cas9 gene editing, proximity ligation assay, cytoplasmic and mitochondrial fractions, mitochondrial immunoprecipitation assay, and flow cytometry analysis were performed to evaluate the underlying mechanism of how mito-COX-2 and p-Drp1Ser616 interaction regulates the chemotherapeutic response via mitochondrial dynamics in vitro and in vivo. We found that COX-2 and Drp1 were frequently upregulated and confer a poor prognosis in HCC. We also found that the proportion of mito-COX-2 and p-Drp1Ser616 was increased in HCC cell lines. In vitro, we demonstrated that the enhanced mitochondrial translocation of COX-2 promotes its interaction with p-Drp1Ser616 via PTEN-induced putative kinase 1 (PINK1)-mediated Drp1 phosphorylation activation. This increase was associated with higher colony formation, cell proliferation, and mitochondrial fission. These findings were confirmed by knocking down COX-2 in HCC cells using CRISPR/Cas9 technology. Furthermore, inhibition of Drp1 using pharmacologic inhibitors (Mdivi-1) or RNA interference (siDNM1L) decreased mito-COX-2/p-Drp1Ser616 interaction-mediated mitochondrial fission, and increased apoptosis in HCC cells treated with platinum drugs. Moreover, inhibiting mito-COX-2 acetylation with the natural phytochemical resveratrol resulted in reducing cell proliferation and mitochondrial fission, occurring through upregulation of mitochondrial deacetylase sirtuin 3 (SIRT3), which, in turn, increased the chemosensitivity of HCC to platinum drugs in vitro and in vivo. Our results suggest that targeting interventions to PINK1-mediated mito-COX-2/p-Drp1Ser616-dependent mitochondrial dynamics increases the chemosensitivity of HCC and might help us to understand how to use the SIRT3-modulated mito-COX-2/p-Drp1Ser616 signaling axis to develop an effective clinical intervention in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Yu-Qiao He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Lei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Dong-Bei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Wen-Gang Li
- Department of Hepatobiliary Surgery and Pancreatic & Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China;
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
- Correspondence: (Y.-C.L.); (Z.-N.L.); Tel.: +86-592-2880615 (Y.-C.L.); Fax: +86-592-2881578 (Y.-C.L.)
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
- Correspondence: (Y.-C.L.); (Z.-N.L.); Tel.: +86-592-2880615 (Y.-C.L.); Fax: +86-592-2881578 (Y.-C.L.)
| |
Collapse
|
13
|
Guo H, Ouyang Y, Yin H, Cui H, Deng H, Liu H, Jian Z, Fang J, Zuo Z, Wang X, Zhao L, Zhu Y, Geng Y, Ouyang P. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol 2022; 49:102227. [PMID: 34979450 PMCID: PMC8728583 DOI: 10.1016/j.redox.2021.102227] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Copper (Cu) is a necessary micronutrient at lower concentration, while excessive Cu exposure or Cu homeostasis disorders can lead to toxicity. The mechanism of male reproductive toxicity induced by Cu is still unknown. This study aims to investigate whether autophagy plays an important role in copper-induced spermatogenesis disorder in vivo and vitro. The present study showed that copper sulfate (CuSO4) might significantly promote autophagy level in the testis and mouse-derived spermatogonia cell line GC-1 spg cells. Concurrently, CuSO4 could induce autophagy via AMPK-mTOR pathway that downregulated p-mTOR/mTOR and subsequently upregulated p-AMPKα/AMPKα as well as p-ULK1/ULK1. In the meanwhile, CuSO4 treatment could also increase expression levels of the autophagy-related proteins. Then, the role of oxidative stress in CuSO4-induced autophagy was investigated. The findings demonstrated that oxidative stress inhibitor (NAC) attenuated CuSO4-induced autophagy in vivo and vitro, reversing the activation for AMPK-mTOR pathway. Additionally, the study also investigated how autophagy worked under the spermatogenesis disorder induced by CuSO4. Inhibition of autophagy could decrease cell viability, and enhance the ROS accumulation and apoptosis in the GC-1 cells, meanwhile, the spermatogenesis disorder, oxidative stress and histopathological changes were increased in the testis. Furthermore, co-treatment with the apoptosis inhibitor (Z-VAD-FMK) could decrease the spermatogenesis disorder but not influence autophagy. Besides, the crosslink between autophagy and ferroptosis were also measured, the data showed that inhibition of autophagy could suppress CuSO4-induced ferroptosis in in vivo and vitro. Altogether, abovementioned results indicated that CuSO4 induced autophagy via oxidative stress-dependent AMPK-mTOR pathway in the GC-1 cells and testis, and autophagy activation possibly led to the generation of protection mechanism through oxidative damage and apoptosis inhibition, however, autophagy also aggravate CuSO4 toxicology through promoting ferroptosis. Overall, autophagy plays a positive role for attenuating CuSO4-induced testicular damage and spermatogenesis disorder. Our study provides a possible targeted therapy for Cu overload-induced reproduction toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
14
|
Hu X, Jiang Z, Teng L, Yang H, Hong D, Zheng D, Zhao Q. Platinum-Induced Peripheral Neuropathy (PIPN): ROS-Related Mechanism, Therapeutic Agents, and Nanosystems. Front Mol Biosci 2021; 8:770808. [PMID: 34901160 PMCID: PMC8652200 DOI: 10.3389/fmolb.2021.770808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN) caused by the accumulation of Pt in the peripheral nervous system limits the clinical application, whose prevention and treatment are still a huge challenge. To date, Pt-induced reactive oxygen species (ROS) generation has been studied as one of the primary mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS overproduction. More importantly, we focus on the cutting-edge nanotechnology in view of ROS-related PIPN mechanisms and will discuss the rational fabrication of tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyu Teng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Zheng
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Copper in tumors and the use of copper-based compounds in cancer treatment. J Inorg Biochem 2021; 226:111634. [PMID: 34740035 DOI: 10.1016/j.jinorgbio.2021.111634] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Copper homeostasis is strictly regulated by protein transporters and chaperones, to allow its correct distribution and avoid uncontrolled redox reactions. Several studies address copper as involved in cancer development and spreading (epithelial to mesenchymal transition, angiogenesis). However, being endogenous and displaying a tremendous potential to generate free radicals, copper is a perfect candidate, once opportunely complexed, to be used as a drug in cancer therapy with low adverse effects. Copper ions can be modulated by the organic counterpart, after complexed to their metalcore, either in redox potential or geometry and consequently reactivity. During the last four decades, many copper complexes were studied regarding their reactivity toward cancer cells, and many of them could be a drug choice for phase II and III in cancer therapy. Also, there is promising evidence of using 64Cu in nanoparticles as radiopharmaceuticals for both positron emission tomography (PET) imaging and treatment of hypoxic tumors. However, few compounds have gone beyond testing in animal models, and none of them got the status of a drug for cancer chemotherapy. The main challenge is their solubility in physiological buffers and their different and non-predictable mechanism of action. Moreover, it is difficult to rationalize a structure-based activity for drug design and delivery. In this review, we describe the role of copper in cancer, the effects of copper-complexes on tumor cell death mechanisms, and point to the new copper complexes applicable as drugs, suggesting that they may represent at least one component of a multi-action combination in cancer therapy.
Collapse
|