1
|
Cristina Oliveira M, Campello MPC, Gano L, Raposinho P, Belchior A, Mendes E, Silva CD, Lopes-Nunes J, Cruz C, Paulo A. Evaluation of a Radioiodinated G-Quadruplex Binder in Cervical Cancer Models. ChemMedChem 2024; 19:e202400438. [PMID: 39302068 DOI: 10.1002/cmdc.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
We herein describe the radiosynthesis of a 125I-labeled acridine orange derivative ([125I]-C8), acting as a G-quadruplex binder, and its biological evaluation in cervical cancer models, aiming to enlighten its potential as a radioligand for Auger Electron Radiopharmaceutical Therapy (AE-RPT) of cancer. [125I]-C8 was synthesized with a moderate radiochemical yield (ca. 60 %) by a [125I]iodo-destannylation reaction. Its evaluation in cervical cancer HeLa cells demonstrated that the radiocompound has a significant cellular internalization with a notorious accumulation in the cell nucleus. In line with these results, [125I]-C8 strongly compromised the viability of HeLa cells in a dose-dependent manner, inducing non-repairable DNA lesions that are most probably due to the AEs emitted by 125I in close proximity to the DNA molecule. Biodistribution studies in a murine HeLa xenograft model showed that [125I]-C8 has fast blood clearance and high in vivo stability but poor tumor uptake, after systemic administration. The respective supramolecular conjugate with the AS1411 aptamer ([125I]-C8/AS1411) led to a slower blood clearance in the same animal tumor model, although without improving the tumor uptake. To take advantage of the radiotoxicity of [125I]-C8 against cervical cancer cells other strategies need to be studied, based namely on alternative nanodelivery carriers and/or intratumoral injection approaches.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Maria Paula Cabral Campello
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Edgar Mendes
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Catarina D Silva
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Jéssica Lopes-Nunes
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
2
|
Gil-Martínez A, Galiana-Roselló C, Lázaro-Gómez A, Mulet-Rivero L, González-García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2024:e202400873. [PMID: 39656761 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Príncipe Felipe Research Center, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Andrea Lázaro-Gómez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Laura Mulet-Rivero
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
3
|
Scialabba C, Marretta L, D'Anna L, Barone G, Cavallaro G, Terenzi A, Mauro N. Synergistic Anticancer Effects by Enhancing the G-Quadruplex Binding of Nickel(II) Salphen Complexes through Coupling with S-Doped Carbon Nanodots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56777-56788. [PMID: 39380145 DOI: 10.1021/acsami.4c12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent decades, researchers have focused on developing less toxic and more precise cancer therapies. Carbon nanodots (CDs) are among the most promising technologies due to their high biocompatibility, tunable fluorescence, and ability to facilitate photothermal and photodynamic therapy. This study explores the synthesis and characterization of two CDs conjugated with Salphen metal complexes, namely, CDs-PEG-M1 and CDs-PEG-M2, through Sonogashira coupling. Their interaction with G-quadruplex DNA structures (G4s), motifs largely involved in cancer development, was evaluated using various spectroscopic techniques. The results indicate that CDs-PEG-M1 exhibits greater effectiveness in stabilizing G4 structures compared to the metal complex alone or nonfunctionalized CDs. This enhanced stabilization suggests that CDs-PEG-M1 could reduce the concentration of the metal complex needed for potential antitumor applications, thereby minimizing side effects on nontarget tissues. When tested on breast cancer models (MDA-MB-231 as a triple-negative model and MCF-7 as a HER-2 positive model) and on a healthy cell line (HDFa), the CDs-PEG-M1 conjugate reduced cell viability in a concentration- and time-dependent manner, showing greater potency and selectivity against cancer cells compared to virgin CDs and the free M1 complex. This synergistic anticancer effect, driven by the interaction with G4 structures and reactive oxygen species production, underscores the potential of CDs-PEG-M1 as a targeted nanotheranostic tool.
Collapse
Affiliation(s)
| | - Laura Marretta
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | - Luisa D'Anna
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | - Giampaolo Barone
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | | | - Alessio Terenzi
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | | |
Collapse
|
4
|
Khan HY, Ansari MF, Tabassum S, Arjmand F. A review on the recent advances of interaction studies of anticancer metal-based drugs with therapeutic targets, DNA and RNAs. Drug Discov Today 2024; 29:104055. [PMID: 38852835 DOI: 10.1016/j.drudis.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Metal-based drugs hold promise as potent anticancer agents owing to their unique interactions with cellular targets. This review discusses recent advances in our understanding of the intricate molecular interactions of metal-based anticancer compounds with specific therapeutic targets in cancer cells. Advanced computational and experimental methodologies delineate the binding mechanisms, structural dynamics and functional outcomes of these interactions. In addition, the review sheds light on the precise modes of action of these drugs, their efficacy and the potential avenues for further optimization in cancer-treatment strategies and the development of targeted and effective metal-based therapies for combating various forms of cancer.
Collapse
Affiliation(s)
- Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
5
|
Aderinto SO, John T, Onawole A, Galleh RP, Thomas JA. Iridium(III)-based minor groove binding complexes as DNA photocleavage agents. Dalton Trans 2024; 53:7282-7291. [PMID: 38466178 DOI: 10.1039/d4dt00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.
Collapse
Affiliation(s)
- Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdulmujeeb Onawole
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
6
|
Palma E, Içhedef C, Fernandes C, Belchior A, Raposinho P, Gano L, Miranda A, Moreira D, Lourenço P, Cruz C, Pires AS, Botelho MF, Paulo A. Targeting of G-quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chemistry 2024; 30:e202400285. [PMID: 38386665 DOI: 10.1002/chem.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Cigdem Içhedef
- Ege University, Institute of Nuclear Sciences, 35100, Izmir, Turkey
| | - Célia Fernandes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - David Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
7
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
8
|
Palma E, Santos JF, Fernandes C, Paulo A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chemistry 2024; 30:e202303591. [PMID: 38038361 DOI: 10.1002/chem.202303591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Joana F Santos
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
9
|
Gil-Martínez A, Hernández A, Galiana-Roselló C, López-Molina S, Ortiz J, Sastre-Santos Á, García-España E, González-García J. Development and application of metallo-phthalocyanines as potent G-quadruplex DNA binders and photosensitizers. J Biol Inorg Chem 2023:10.1007/s00775-023-02003-3. [PMID: 37452218 PMCID: PMC10368564 DOI: 10.1007/s00775-023-02003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Metallo-phthalocyanines (MPc) are common photosensitizers with ideal photophysical and photochemical properties. Also, these molecules have shown to interact with non-canonical nucleic acid structures, such as G-quadruplexes, and modulate oncogenic expression in cancer cells. Herein, we report the synthesis and characterisation of two metallo-phthalocyanines containing either zinc (ZnPc) or nickel (NiPc) in the central aromatic core and four alkyl ammonium lateral chains. The interaction of both molecules with G-quadruplex DNA was assessed by UV-Vis, fluorescence and FRET melting experiments. Both molecules bind strongly to G-quadruplexes and stabilise these structures, being NiPc the most notable G-quadruplex stabiliser. In addition, the photosensitizing ability of both metal complexes was explored by the evaluation of the singlet oxygen generation and their photoactivation in cells. Only ZnPc showed a high singlet oxygen generation either by direct observation or by indirect evaluation using a DPBF dye. The cellular evaluation showed mainly cytoplasmic localization of ZnPc and a decrease of the IC50 values of the cell viability of ZnPc upon light activation of two orders of magnitude. Two metallo-phthalocyanines containing zinc and nickel within the aromatic core have been investigated as G-quadruplex stabilizers and photosensitizers. NiPc shows a high G4 binding but negligible photosensitizing ability while ZnPc exhibits a moderate binding to G-quadruplex together with a high potency to generate singlet oxygen and photocytotoxicity. The interaction with G4s and capacity to be photosensitized is associated with the geometry adopted by the central metal core of the phthalocyanine scaffold.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Adrián Hernández
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Javier Ortiz
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Enrique García-España
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Jorge González-García
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain.
| |
Collapse
|
10
|
Bahls B, Aljnadi IM, Emídio R, Mendes E, Paulo A. G-Quadruplexes in c-MYC Promoter as Targets for Cancer Therapy. Biomedicines 2023; 11:biomedicines11030969. [PMID: 36979947 PMCID: PMC10046398 DOI: 10.3390/biomedicines11030969] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer is a societal burden demanding innovative approaches. A major problem with the conventional chemotherapeutic agents is their strong toxicity and other side effects due to their poor selectivity. Uncontrolled proliferation of cancer cells is due to mutations, deletions, or amplifications in genes (oncogenes) encoding for proteins that regulate cell growth and division, such as transcription factors, for example, c-MYC. The direct targeting of the c-MYC protein has been attempted but so far unsuccessfully, as it lacks a definite binding site for the modulators. Meanwhile, another approach has been explored since the discovery that G-quadruplex secondary DNA structures formed in the guanine-rich sequences of the c-MYC promoter region can downregulate the transcription of this oncogene. Here, we will overview the major achievements made in the last decades towards the discovery of a new class of anticancer drugs targeting G-quadruplexes in the c-MYC promoter of cancer cells.
Collapse
Affiliation(s)
- Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita Emídio
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
11
|
Taheri-Ledari R, Tarinsun N, Sadat Qazi F, Heidari L, Saeidirad M, Ganjali F, Ansari F, Hassanzadeh-Afruzi F, Maleki A. Vancomycin-Loaded Fe 3O 4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated-β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg Chem 2023; 62:2530-2547. [PMID: 36734619 DOI: 10.1021/acs.inorgchem.2c02634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (Fe3O4 NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@Fe3O4/MOF-199]BCD-Gn) could be attached to the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD600) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@Fe3O4/MOF-199]BCD-Gn cargo.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Nasibe Tarinsun
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
12
|
Pont I, Galiana-Roselló C, Sabater-Arcis M, Bargiela A, Frías JC, Albelda MT, González-García J, García-España E. Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes. Org Biomol Chem 2023; 21:1000-1007. [PMID: 36541358 DOI: 10.1039/d2ob01911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two new ligands (TPB3P and TPB3Py) showing a strong stabilisation effect and good selectivity for G4 over duplex DNAs have been synthesised. The ligands hold three analogous polyamine pendant arms (TPA3P and TPA3Py) but differ in the central aromatic core, which is a triphenylbenzene moiety instead of a triphenylamine moiety. Both TPB3P and TPB3Py exhibit high cytotoxicity in MCF-7, LN229 and HeLa cancer cells in contrast to TPA-based ligands, which exhibit no significant cytotoxicity. Moreover, the most potent G4 binders have been encapsulated in liposomes and AS1411 aptamer-targeted liposomes reaching nanomolar IC50 values for the most cytotoxic systems.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular Research Unit, Neurology Department, Hospital La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Juan Carlos Frías
- Department of Biomedical Sciences, CEU Cardenal Herrera University, Ramón y Cajal s/n, 46115 Alfara del Patriarca, Spain
| | - M Teresa Albelda
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Jorge González-García
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
13
|
Gil-Martínez A, López-Molina S, Galiana-Roselló C, Lázaro-Gómez A, Schlüter F, Rizzo F, González-García J. Modulating the G-Quadruplex and Duplex DNA Binding by Controlling the Charge of Fluorescent Molecules. Chemistry 2023; 29:e202203094. [PMID: 36318180 PMCID: PMC10107164 DOI: 10.1002/chem.202203094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Two fluorescent and non-toxic spirobifluorene molecules bearing either positive (Spiro-NMe3) or negative (Spiro-SO3) charged moieties attached to the same aromatic structure have been investigated as binders for DNA. The novel Spiro-NMe3 containing four alkylammonium substituents interacts with G-quadruplex (G4) DNA structures and shows preference for G4s over duplex by means of FRET melting and fluorescence experiments. The interaction is governed by the charged substituents of the ligands as deduced from the lower binding of the sulfonate analogue (Spiro-SO3). On the contrary, Spiro-SO3 exhibits higher binding affinity to duplex DNA structure than to G4. Both molecules show a moderate quenching of the fluorescence upon DNA binding. The confocal microscopy evaluation shows the internalization of both molecules in HeLa cells and their lysosomal accumulation.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Andrea Lázaro-Gómez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Friederike Schlüter
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Fabio Rizzo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany.,Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milano, Italy
| | - Jorge González-García
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
14
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Kaußler C, Wragg D, Schmidt C, Moreno-Alcántar G, Jandl C, Stephan J, Fischer RA, Leoni S, Casini A, Bonsignore R. "Dynamical Docking" of Cyclic Dinuclear Au(I) Bis-N-heterocyclic Complexes Facilitates Their Binding to G-Quadruplexes. Inorg Chem 2022; 61:20405-20423. [PMID: 36484812 PMCID: PMC9953335 DOI: 10.1021/acs.inorgchem.2c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim to improve the design of metal complexes as stabilizers of noncanonical DNA secondary structures, namely, G-quadruplexes (G4s), a series of cyclic dinuclear Au(I) N-heterocyclic carbene complexes based on xanthine and benzimidazole ligands has been synthesized and characterized by various methods, including X-ray diffraction. Fluorescence resonance energy transfer (FRET) and CD DNA melting assays unraveled the compounds' stabilization properties toward G4s of different topologies of physiological relevance. Initial structure-activity relationships have been identified and recognize the family of xanthine derivatives as those more selective toward G4s versus duplex DNA. The binding modes and free-energy landscape of the most active xanthine derivative (featuring a propyl linker) with the promoter sequence cKIT1 have been studied by metadynamics. The atomistic simulations evidenced that the Au(I) compound interacts noncovalently with the top G4 tetrad. The theoretical results on the Au(I) complex/DNA Gibbs free energy of binding were experimentally validated by FRET DNA melting assays. The compounds have also been tested for their antiproliferative properties in human cancer cells in vitro, showing generally moderate activity. This study provides further insights into the biological activity of Au(I) organometallics acting via noncovalent interactions and underlines their promise for tunable targeted applications by appropriate chemical modifications.
Collapse
Affiliation(s)
- Clemens Kaußler
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Darren Wragg
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Claudia Schmidt
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Guillermo Moreno-Alcántar
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Christian Jandl
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Johannes Stephan
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Roland A. Fischer
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany,Chair
of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Stefano Leoni
- School
of Chemistry, Cardiff University, Park Place, CardiffCF10 3AT, U.K.
| | - Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany,
| | - Riccardo Bonsignore
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 17, Palermo90128, Italy,
| |
Collapse
|
16
|
Khosravifarsani M, Ait-Mohand S, Paquette B, Sanche L, Guérin B. In vivo behavior of [64Cu]NOTA-terpyridine platinum, a novel chemo-radio-theranostic agent for imaging, and therapy of colorectal cancer. Front Med (Lausanne) 2022; 9:975213. [PMID: 36226156 PMCID: PMC9549809 DOI: 10.3389/fmed.2022.975213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
To overcome resistance to chemotherapy for colorectal cancer, we propose to validate in vivo a novel terpyridine-platinum (TP) compound radiolabeled with the radio-theranostic isotope 64Cu. In vivo stability, biodistribution, PET imaging, tumor growth delay, toxicity and dosimetry of [64Cu]NOTA-C3-TP were determined. The current experimental studies show that [64Cu]NOTA-C3-TP is stable in vivo, rapidly eliminated by the kidneys and has a promising tumor uptake ranging from 1.8 ± 0.4 to 3.0 ± 0.2 %ID/g over 48 h. [64Cu]NOTA-C3-TP retarded tumor growth by up to 6 ± 2.0 days and improved survival relative to vehicle and non-radioactive [NatCu]NOTA-C3-TP over 17 days of tumor growth observation. This effect was obtained with only 0.4 nmol i.v. injection of [64Cu]NOTA-C3-TP, which delivers 3.4 ± 0.3 Gy tumoral absorbed dose. No evidence of toxicity, by weight loss or mortality was revealed. These findings confirm the high potential of [64Cu]NOTA-TP as a novel radio-theranostic agent.
Collapse
Affiliation(s)
- Meysam Khosravifarsani
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Sherbrooke Molecular Imaging Center (CIMS), Centre de Recherche du CHUS (CRCHUS), Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Miglietta G, Marinello J, Russo M, Capranico G. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer 2022; 21:180. [PMID: 36114513 PMCID: PMC9482198 DOI: 10.1186/s12943-022-01649-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractG-quadruplex (G4) binders have been investigated to discover new anticancer drugs worldwide in past decades. As these ligands are generally not highly cytotoxic, the discovery rational was mainly based on increasing the cell-killing potency. Nevertheless, no G4 binder has been shown yet to be effective in cancer patients. Here, G4 binder activity at low dosages will be discussed as a critical feature to discover ligands with therapeutic effects in cancer patients. Specific effects of G4 binders al low doses have been reported to occur in cancer and normal cells. Among them, genome instability and the stimulation of cytoplasmic processes related to autophagy and innate immune response open to the use of G4 binders as immune-stimulating agents. Thus, we propose a new rational of drug discovery, which is not based on cytotoxic potency but rather on immune gene activation at non-cytotoxic dosage.
Collapse
|
18
|
Cirri D, Bazzicalupi C, Ryde U, Bergmann J, Binacchi F, Nocentini A, Pratesi A, Gratteri P, Messori L. Computationally enhanced X-ray diffraction analysis of a gold(III) complex interacting with the human telomeric DNA G-quadruplex. Unravelling non-unique ligand positioning. Int J Biol Macromol 2022; 211:506-513. [PMID: 35561865 DOI: 10.1016/j.ijbiomac.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
The crystal structure of the human telomeric DNA Tel24 G-quadruplex (Tel24 = TAG3(T2AG3)3T) in complex with the novel [AuL] species (with L = 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine - TPymT-α) was solved by a novel joint molecular mechanical (MM)/quantum mechanical (QM) innovative approach. The quantum-refinement crystallographic method (crystallographic refinement enhanced with quantum mechanical calculation) was adapted to treat the [AuL]/G-quadruplex structure, where each gold complex in the binding site was found spread over four equally occupied positions. The four positions were first determined by docking restrained to the crystallographically determined metal ions' coordinates. Then, the quantum refinement method was used to resolve the poorly defined density around the ligands and improve the crystallographic determination, revealing that the binding preferences of this metallodrug toward Tel24 G-quadruplex arise from a combined effect of pyrimidine stacking, metal-guanine interactions and charge-charge neutralizing action of the π-acid triazine. The occurrence of interaction in solution with the Tel24 G-quadruplex DNA was further proved through DNA melting experiments, which showed a slight destabilisation of the quadruplex upon adduct formation.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Ulf Ryde
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| | - Justin Bergmann
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Paola Gratteri
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Mendes E, Bahls B, Aljnadi IM, Paulo A. Indoloquinolines as scaffolds for the design of potent G-quadruplex ligands. Bioorg Med Chem Lett 2022; 72:128862. [PMID: 35716866 DOI: 10.1016/j.bmcl.2022.128862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Indoloquinolines are natural alkaloids with known affinity to DNA and antiproliferative activity against bacteria, parasites, and cancer cells. Due to their non-chiral skeleton, their total synthesis is easy to achieve and throughout the years, many derivatives have been studied for their potential as drugs. Herein we review the indoloquinolines and bioisosters that have been designed, synthesised, and evaluated for their selective binding to G-quadruplex nucleic acid structures, as well as the reported effects in cancer cells. The data collected so far strongly suggest that indoloquinolines are good scaffolds for the development of drugs and probes targeting the G-quadruplex structures, but they also show that this scaffold is still underexplored.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| |
Collapse
|
20
|
Metal Complexes in Target-Specific Anticancer Therapy: Recent Trends and Challenges. J CHEM-NY 2022. [DOI: 10.1155/2022/9261683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is characterized by abnormal cell differentiation in or on the part of the body. The most commonly used chemotherapeutic drugs are developed to target rapidly dividing cells, such as cancer cells, but they also damage healthy epithelial cells. This has serious consequences for normal cells and become responsible for the development of various disorders. Several strategies for delivering the cytotoxic drugs to cancerous sites that limit systemic toxicity and other adverse effects have recently been evolved. Among them, biomolecule-conjugated metal complexes-based cancer targeting strategies have shown tremendous advantages in cancer therapy. This review focuses on several chemoselective biomolecules-bound metal complexes as prospective cancer therapy-targeted agents. In this review, we presented the details of the various extra- and intracellular targeting mechanisms in cancer therapy. We also addressed the current clinical issues and recent therapeutic strategies in targeted cancer therapy that may pave a way for the future direction of metal complexes-based targeted cancer therapy.
Collapse
|
21
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
22
|
Miron CE, Chen M, Mergny JL, Petitjean A. Portrait of a Family of Highly Stabilizing and Selective Guanine Quadruplex Platinum(II)-Based Binders. Chemistry 2021; 28:e202103839. [PMID: 34862673 DOI: 10.1002/chem.202103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/12/2022]
Abstract
The long-standing history of platinum coordination complexes in nucleic acid recognition attests to the unique suitability of such species for therapeutic applications. Here, we report the synthetic exploration and development of a family of di-imine ligands, and their platinum(II) complexes, elaborated on a 3-(2-pyridyl)-[1,2,4]triazolo[4,3-a]pyridine platform which, in its unsubstituted form, has recently been shown to display exceptional capabilities for guanine quadruplex (G4) targeting. The identification of facile, high-yielding synthetic methods for the derivatization of this platform for the incorporation of additional sites of interactions with guanine quadruplex loops and grooves, along with the optimization of platinum(II) complexation methods, are discussed. Gratifyingly, preliminary biophysical screening of this novel family of binders validates all but one family members as robust G4 binders and highlights enhanced selectivity for quadruplex versus duplex DNA compared to the parent compound. These results bear promise for practical developments based on this platform.
Collapse
Affiliation(s)
- Caitlin E Miron
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L3N6, Canada.,Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A0B8, Canada
| | - Mickey Chen
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L3N6, Canada
| | - Jean-Louis Mergny
- Institut Européen de Chimie et Biologie, 2 rue Escarpit, F-33607, Pessac, France.,Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau cedex, France
| | - Anne Petitjean
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L3N6, Canada
| |
Collapse
|
23
|
Interaction of 9-Methoxyluminarine with Different G-Quadruplex Topologies: Fluorescence and Circular Dichroism Studies. Int J Mol Sci 2021; 22:ijms221910399. [PMID: 34638738 PMCID: PMC8508660 DOI: 10.3390/ijms221910399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The interactions of G-quadruplexes of different topologies with highly fluorescent 9-methoxyluminarine ligand 9-MeLM were investigated by fluorescence and circular dichroism spectroscopy. The results showed that 9-methoxyluminarine was able to interact and did not destabilize any investigated molecular targets. The studied compound was selectively quenched by parallel c-MYC G-quadruplex DNA, whereas hybrid and antiparallel G4 topology caused only a negligible decrease in the fluorescence of the ligand. A high decrease of fluorescence of the ligand after binding with c-MYC G-quadruplex suggests that this molecule can be used as a selective probe for parallel G-quadruplexes.
Collapse
|
24
|
Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. MICROMACHINES 2021; 12:mi12091094. [PMID: 34577737 PMCID: PMC8465297 DOI: 10.3390/mi12091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.
Collapse
Affiliation(s)
- Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Correspondence: ; Tel.: +39-011-090-43-22
| | - Francesca Legittimo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Marco Allione
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Luciano Scaltrito
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| |
Collapse
|