1
|
Thamm JR, Welzel J, Schuh S. Diagnosis and therapy of actinic keratosis. J Dtsch Dermatol Ges 2024; 22:675-690. [PMID: 38456369 DOI: 10.1111/ddg.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/28/2023] [Indexed: 03/09/2024]
Abstract
Actinic keratosis (AK) is considered a chronic and recurring in situ skin neoplasia, with a possible transformation into invasive squamous cell carcinoma (SCC). Among others, predominant risk factors for development of AK are UV-light exposure and immunosuppression. Basal epidermal keratinocyte atypia (AK I) and proliferation (PRO score) seem to drive malignant transformation, rather than clinical appearance of AK (Olsen I-III). Due to the invasiveness of punch biopsy, those histological criteria are not regularly assessed. Non-invasive imaging techniques, such as optical coherence tomography (OCT), reflectance confocal microscopy (RCM) and line-field confocal OCT (LC-OCT) are helpful to distinguish complex cases of AK, Bowen's disease, and SCC. Moreover, LC-OCT can visualize the epidermis and the papillary dermis at cellular resolution, allowing real-time PRO score assessment. The decision-making for implementation of therapy is still based on clinical risk factors, ranging from lesion- to field-targeted and ablative to non-ablative regimens, but in approximately 85% of the cases a recurrence of AK can be observed after a 1-year follow-up. The possible beneficial use of imaging techniques for a non-invasive follow-up of AK to detect recurrence or invasive progression early on should be subject to critical evaluation in further studies.
Collapse
Affiliation(s)
- Janis Raphael Thamm
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Thamm JR, Welzel J, Schuh S. Diagnose und Therapie aktinischer Keratosen. J Dtsch Dermatol Ges 2024; 22:675-691. [PMID: 38730534 DOI: 10.1111/ddg.15288_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/28/2023] [Indexed: 05/13/2024]
Abstract
Actinic keratosis (AK) is considered a chronic and recurring in situ skin neoplasia, with a possible transformation into invasive squamous cell carcinoma (SCC). Among others, predominant risk factors for development of AK are UV-light exposure and immunosuppression. Basal epidermal keratinocyte atypia (AK I) and proliferation (PRO Score) seem to drive malignant turnover, rather than clinical appearance of AK (Olsen I-III). Due to the invasiveness of punch biopsy, those histological criteria are not regularly assessed. Non-invasive imaging techniques, such as optical coherence tomography (OCT), reflectance confocal microscopy (RCM) and line-field confocal OCT (LC-OCT) are helpful to distinguish complex cases of AK, Bowen's disease and SCC. Moreover, LC-OCT can visualize the epidermis and the papillary dermis at cellular resolution, allowing real-time PRO Score assessment. The decision-making for implementation of therapy is still based on clinical risk factors, ranging from lesion- to field-targeted and ablative to non-ablative regimes, but in approximately 85% of the cases a recurrence of AK can be observed after a 1-year follow-up. The possible beneficial use of imaging techniques for a non-invasive follow-up of AK to detect recurrence or invasive progression early on should be subject to critical evaluation in further studies.
Collapse
Affiliation(s)
| | - Julia Welzel
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Sandra Schuh
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| |
Collapse
|
3
|
Tian R, Wang X, Li Y, Zhang L, Wen X. Application of microneedling in photodynamic therapy: A systematic review. Photodiagnosis Photodyn Ther 2024; 46:104016. [PMID: 38367923 DOI: 10.1016/j.pdpdt.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND The application of photodynamic therapy (PDT) is pivotal in the management of diverse dermatologic conditions. Microneedling (MN) is a minimally invasive tool that is capable of inducing transient pores on the skin to facilitate transdermal drug delivery. Several studies have reported augmentation of PDT combined with MN. This systematic review analyzes the current studies on the efficacy and safety of MN-assisted PDT for skin diseases. METHODS The literature search using the PRISMA standard was completed through PubMed, Embase, Web of Science and CENTRAL from the establishment of the databases to November 2023. Two independent researchers finished the procedure. RESULTS A total of 12 articles and 413 subjects met our study criteria. This systematic review suggests that MN-assisted PDT can decrease the incubation time required for the photosensitizer and reduce skin lesions of actinic keratosis (AK) . The common side effect is pain and no serious adverse events were reported. CONCLUSIONS MN is an effective method to increase the transdermal delivery rate of photosensitizers. For different photosensitizers and disease, MN may show different clinical effects.
Collapse
Affiliation(s)
- Run Tian
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xunyi Wang
- Department of Audiology and Speech Pathology/Department of Otorhinolaryngology - Head & Neck Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yong Li
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
4
|
Shinde P, Page A, Bhattacharya S. Ethosomes and their monotonous effects on Skin cancer disruption. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Skin cancer is one of the most prominent diseases, affecting all continents worldwide, and has shown a significant rise in mortality and prevalence. Conventional therapy, including chemotherapy and surgery, has a few drawbacks. The ethosomal systems would be thoroughly reviewed in this compilation, and they would be classified based on constituents: classical ethosomes, binary ethosomes, and transethosomes. Ethosomes systems are model lipid vesicular carriers with a substantial portion of ethanol. The impacts of ethosomal system components, preparation techniques, and their major roles in selecting the final characteristics of these nanocarriers are comprehensively reviewed in this chapter. The special techniques for ethosomes, including the cold approach, hot approach, injection method, mechanical dispersion method, and conventional method, are explained in this chapter. Various evaluation parameters of ethosomes were also explained. Furthermore, ethosomal gels, patches, and creams can be emphasised as innovative pharmaceutical drug formulations. Some hybrid ethosomal vesicles possessing combinatorial cancer therapy using nanomedicine could overcome the current drug resistance of specific cancer cells. Through the use of repurpose therapy, phytoconstituents may be delivered more effectively. A wide range of in vivo models are employed to assess their effectiveness. Ethosomes have provided numerous potential skin cancer therapeutic approaches in the future.
Collapse
|
5
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Demartis S, Anjani QK, Volpe-Zanutto F, Paredes AJ, Jahan SA, Vora LK, Donnelly RF, Gavini E. Trilayer dissolving polymeric microneedle array loading Rose Bengal transfersomes as a novel adjuvant in early-stage cutaneous melanoma management. Int J Pharm 2022; 627:122217. [PMID: 36155790 DOI: 10.1016/j.ijpharm.2022.122217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Melanoma remains a global concern, but current therapies present critical limitations pointing out the urgent need for novel strategies. Among these, the cutaneous delivery of drugs selectively damaging cancer cells is highly attractive. Rose Bengal (RB) is a dye exhibiting selective cytotoxicity towards melanoma, but the high water solubility and low permeability hinder its therapeutic potential. We previously developed RB-loaded transfersomes (RBTF) to mediate the RB dermal delivery; however, a platform efficiently delivering RBTF in the deepest strata is essential for a successful therapeutic activity. In this regard, dissolving microneedles release the encapsulated cargo up to the dermis, painlessly piercing the outmost skin layers. Therefore, herein we developed and characterised a trilayer dissolving microneedle array (RBTF-TDMNs) loading RBTF to maximise RBTF intradermal delivery in melanoma management. RBTF-TDMNs were proven strong enough to pierce excised porcine skin and rapidly dissolve and deposit RBTF intradermally while maintaining their physicochemical properties. Also, 3D visualisation of the system itself and while penetrating the skin was performed by multi-photon microscopy. Finally, a dermatokinetic study showed that RBTF-TDMNs offered unique delivery efficiency advantages compared to RBTF dispersion and free drug-loaded TDMNs. The proposed RBTF-TDMNs represent a valuable potential adjuvant tool for the topical management of melanoma.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy; School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | | - Subrin A Jahan
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Combination-Based Strategies for the Treatment of Actinic Keratoses with Photodynamic Therapy: An Evidence-Based Review. Pharmaceutics 2022; 14:pharmaceutics14081726. [PMID: 36015352 PMCID: PMC9416092 DOI: 10.3390/pharmaceutics14081726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a highly effective and widely adopted treatment strategy for many skin diseases, particularly for multiple actinic keratoses (AKs). However, PDT is ineffective in some cases, especially if AKs occur in the acral part of the body. Several methods to improve the efficacy of PDT without significantly increasing the risks of side effects have been proposed. In this study, we reviewed the combination-based PDT treatments described in the literature for treating AKs; both post-treatment and pretreatment were considered including topical (i.e., diclofenac, imiquimod, adapalene, 5-fluorouracil, and calcitriol), systemic (i.e., acitretin, methotrexate, and polypodium leucotomos), and mechanical–physical (i.e., radiofrequency, thermomechanical fractional injury, microneedling, microdermabrasion, and laser) treatment strategies. Topical pretreatments with imiquimod, adapalene, 5-fluorouracil, and calcipotriol were more successful than PDT alone in treating AKs, while the effect of diclofenac gel was less clear. Both mechanical laser treatment with CO2 and Er:YAG (Erbium:Yttrium–Aluminum–Garnet) as well as systemic treatment with Polypodium leucotomos were also effective. Different approaches were relatively more effective in particular situations such as in immunosuppressed patients, AKs in the extremities, or thicker AKs. Conclusions: Several studies showed that a combination-based approach enhanced the effectiveness of PDT. However, more studies are needed to further understand the effectiveness of combination therapy in clinical practice and to investigate the role of acitretin, methotrexate, vitamin D, thermomechanical fractional injury, and microdermabrasion in humans.
Collapse
|
8
|
Rizg WY, Hosny KM, Eshmawi BA, Alamoudi AJ, Safhi AY, Murshid SSA, Sabei FY, Al Fatease A. Tailoring of Geranium Oil-Based Nanoemulsion Loaded with Pravastatin as a Nanoplatform for Wound Healing. Polymers (Basel) 2022; 14:polym14091912. [PMID: 35567079 PMCID: PMC9105023 DOI: 10.3390/polym14091912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The healing of a burn wound is a complex process that includes the re-formation of injured tissues and the control of infection to minimize discomfort, scarring, and inconvenience. The current investigation’s objective was to develop and optimize a geranium oil–based self-nanoemulsifying drug delivery system loaded with pravastatin (Gr-PV-NE). The geranium oil and pravastatin were both used due to their valuable anti-inflammatory and antibacterial activities. The Box–Behnken design was chosen for the development and optimization of the Gr-PV-NE. The fabricated formulations were assessed for their droplet size and their effects on the burn wound diameter in experimental animals. Further, the optimal formulation was examined for its wound healing properties, antimicrobial activities, and ex-vivo permeation characteristics. The produced nanoemulsion had a droplet size of 61 to 138 nm. The experimental design affirmed the important synergistic influence of the geranium oil and pravastatin for the healing of burn wounds; it showed enhanced wound closure and improved anti-inflammatory and antimicrobial actions. The optimal formulation led to a 4-fold decrease in the mean burn wound diameter, a 3.81-fold lowering of the interleukin-6 serum level compared to negative control, a 4-fold increase in the inhibition zone against Staphylococcus aureus compared to NE with Gr oil, and a 7.6-fold increase in the skin permeation of pravastatin compared to PV dispersion. Therefore, the devised nanoemulsions containing the combination of geranium oil and pravastatin could be considered a fruitful paradigm for the treatment of severe burn wounds.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-561-682-377
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fahad Y. Sabei
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
9
|
Daylight-PDT: everything under the sun. Biochem Soc Trans 2022; 50:975-985. [PMID: 35385082 PMCID: PMC9162453 DOI: 10.1042/bst20200822] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.
Collapse
|
10
|
Ulloa Rojas JE, Oliveira VLD, de Araujo DR, Tofoli GR, de Oliveira MM, Carastan DJ, Palaci M, Giuntini F, Alves WA. Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomater Sci Eng 2021; 8:128-139. [PMID: 34752076 DOI: 10.1021/acsbiomaterials.1c00913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitizing drug and visible light produces highly cytotoxic reactive oxygen species (ROS) that leads to cell death. One of the main drawbacks of PDT for topical treatments is the limited skin penetration of some photosensitizers commonly used in this therapy. In this study, we propose the use of polymeric microneedles (MNs) prepared from silk fibroin and poly(vinyl alcohol) (PVA) to increase the penetration efficiency of porphyrin as possible applications in photodynamic therapy. The microneedle arrays were fabricated from mixtures in different proportions (1:0, 7:3, 1:1, 3:7, and 0:1) of silk fibroin and PVA solutions (7%); the polymer solutions were cast in polydimethylsiloxane (PDMS) molds and dried overnight. Patches containing grids of 10 × 10 microneedles with a square-based pyramidal shape were successfully produced through this approach. The polymer microneedle arrays showed good mechanical strength under compression force and sufficient insertion depth in both Parafilm M and excised porcine skin at different application forces (5, 20, 30, and 40 N) using a commercial applicator. We observe an increase in the cumulative permeation of 5-[4-(2-carboxyethanoyl) aminophenyl]-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium through porcine skin treated with the polymer microneedles after 24 h. MNs may be a promising carrier for the transdermal delivery of photosensitizers for PDT, improving the permeation of photosensitizer molecules through the skin, thus improving the efficiency of this therapy for topical applications.
Collapse
Affiliation(s)
- Jose Eduardo Ulloa Rojas
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Vivian Leite de Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | | | - Giovana Radomille Tofoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, 01332-000 São Paulo, Brazil
| | - Matheus Mendes de Oliveira
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Danilo Justino Carastan
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Moises Palaci
- Center for Health Sciences, Federal University of Espirito Santo, Vitória, 29075-910 ES, Brazil
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Wendel Andrade Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| |
Collapse
|