1
|
Kotańska M, Wojtaszek K, Kubacka M, Bednarski M, Nicosia N, Wojnicki M. The Influence of Caramel Carbon Quantum Dots and Caramel on Platelet Aggregation, Protein Glycation and Lipid Peroxidation. Antioxidants (Basel) 2023; 13:13. [PMID: 38275633 PMCID: PMC10812612 DOI: 10.3390/antiox13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Caramel, defined as a coloring agent and as an antioxidant, is used in several kinds of food products and is consumed by many people in different amounts. In our research we showed that the caramelization of sucrose under special conditions leads to the formation of carbon quantum dots (CQDs). So, it makes sense that humans also consume this type of CQDs, and it is theoretically possible for these particles to affect the body. Despite an increasing number of studies describing different types of CQDs, their biosafety is still not clearly understood. In our in vitro research, we examined the effects on platelet aggregation, protein glycation and lipid peroxidation of CQDs and caramel formed from a 20% sucrose solution. In vitro aggregation tests were conducted using freshly collected whole rat blood in a multiplate platelet function analyzer and measurer of electric impedance. The cytotoxic effect of the tested solutions on blood platelets was evaluated based on the release of lactate dehydrogenase. The formation of glycated bovine serum albumin was measured as fluorescence intensity and fructosamine level. The reducing power of the solutions was determined in adipose tissue, and their effect on lipid peroxidation in adipose tissue in vitro was also assessed. By measuring the intensity of hemolysis after incubation in solutions with red blood cell, we assessed their influence on the integration of the red blood cell membrane. All tests were performed in comparison with glucose and fructose and other frequently used sweeteners, such as erythritol and xylitol. Our study showed that caramel and CQDs formed from caramel may influence the glycation process and integrity of the red blood cell membrane, but unlike glucose and fructose, they decrease lipid peroxidation and may reduce Fe (III). Additionally, it is unlikely that they affect platelet aggregation. Compared to glucose and fructose, they may be safer for patients with metabolic disorders; however, further research is needed on the safety and biological activity of caramel and CQD.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Konrad Wojtaszek
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Mickiewicza Ave., 30-059 Krakow, Poland;
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Noemi Nicosia
- PhD Program in Neuroscience, Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Mickiewicza Ave., 30-059 Krakow, Poland;
| |
Collapse
|
2
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
3
|
Dort J, Orfi Z, Fiscaletti M, Campeau PM, Dumont NA. Gpr18 agonist dampens inflammation, enhances myogenesis, and restores muscle function in models of Duchenne muscular dystrophy. Front Cell Dev Biol 2023; 11:1187253. [PMID: 37645248 PMCID: PMC10461444 DOI: 10.3389/fcell.2023.1187253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Muscle wasting in Duchenne Muscular Dystrophy is caused by myofiber fragility and poor regeneration that lead to chronic inflammation and muscle replacement by fibrofatty tissue. Our recent findings demonstrated that Resolvin-D2, a bioactive lipid derived from omega-3 fatty acids, has the capacity to dampen inflammation and stimulate muscle regeneration to alleviate disease progression. This therapeutic avenue has many advantages compared to glucocorticoids, the current gold-standard treatment for Duchenne Muscular Dystrophy. However, the use of bioactive lipids as therapeutic drugs also faces many technical challenges such as their instability and poor oral bioavailability. Methods: Here, we explored the potential of PSB-KD107, a synthetic agonist of the resolvin-D2 receptor Gpr18, as a therapeutic alternative for Duchenne Muscular Dystrophy. Results and discussion: We showed that PSB-KD107 can stimulate the myogenic capacity of patient iPSC-derived myoblasts in vitro. RNAseq analysis revealed an enrichment in biological processes related to fatty acid metabolism, lipid biosynthesis, small molecule biosynthesis, and steroid-related processes in PSB-KD107-treated mdx myoblasts, as well as signaling pathways such as Peroxisome proliferator-activated receptors, AMP-activated protein kinase, mammalian target of rapamycin, and sphingolipid signaling pathways. In vivo, the treatment of dystrophic mdx mice with PSB-KD107 resulted in reduced inflammation, enhanced myogenesis, and improved muscle function. The positive impact of PSB-KD107 on muscle function is similar to the one of Resolvin-D2. Overall, our findings provide a proof-of concept that synthetic analogs of bioactive lipid receptors hold therapeutic potential for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Junio Dort
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Melissa Fiscaletti
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Philippe M. Campeau
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas A. Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Spite M, Fredman G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. ADVANCES IN PHARMACOLOGY 2023; 97:257-281. [DOI: 10.1016/bs.apha.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Why Multitarget Vasodilatory (Endo)cannabinoids are Not Effective as Antihypertensive Compounds after Chronic Administration: Comparison of Their Effects on Systemic and Pulmonary Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15091119. [PMID: 36145339 PMCID: PMC9503677 DOI: 10.3390/ph15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic and pulmonary hypertension are multifactorial, high-pressure diseases. The first one is a civilizational condition, and the second one is characterized by a very high mortality rate. Searching for new therapeutic strategies is still an important task. (Endo)cannabinoids, known for their strong vasodilatory properties, have been proposed as possible drugs for different types of hypertension. Unfortunately, our review, in which we summarized all publications found in the PubMed database regarding chronic administration of (endo)cannabinoids in experimental models of systemic and pulmonary hypertension, does not confirm any encouraging suggestions, being based mainly on in vitro and acute in vivo experiments. We considered vasodilator or blood pressure (BP) responses and cardioprotective, anti-oxidative, and the anti-inflammatory effects of particular compounds and their influence on the endocannabinoid system. We found that multitarget (endo)cannabinoids failed to modify higher BP in systemic hypertension since they induced responses leading to decreased and increased BP. In contrast, multitarget cannabidiol and monotarget ligands effectively treated pulmonary and systemic hypertension, respectively. To summarize, based on the available literature, only (endo)cannabinoids with a defined site of action are recommended as potential antihypertensive compounds in systemic hypertension, whereas both mono- and multitarget compounds may be effective in pulmonary hypertension.
Collapse
|
6
|
Kozłowska H, Malinowska B, Baranowska-Kuczko M, Kusaczuk M, Nesterowicz M, Kozłowski M, Müller CE, Kieć-Kononowicz K, Schlicker E. GPR18-Mediated Relaxation of Human Isolated Pulmonary Arteries. Int J Mol Sci 2022; 23:ijms23031427. [PMID: 35163351 PMCID: PMC8836012 DOI: 10.3390/ijms23031427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (B.M.); (M.B.-K.)
- Correspondence: ; Tel./Fax: +48-85-7485699
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (B.M.); (M.B.-K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (B.M.); (M.B.-K.)
- Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Miłosz Nesterowicz
- Department of Thoracic Surgery, Medical University of Białystok, ul. M.C. Skłodowska 4A, 15-276 Białystok, Poland; (M.N.); (M.K.)
| | - Mirosław Kozłowski
- Department of Thoracic Surgery, Medical University of Białystok, ul. M.C. Skłodowska 4A, 15-276 Białystok, Poland; (M.N.); (M.K.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
- Research Training Group 1873, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland;
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| |
Collapse
|