1
|
Aree T. Supramolecular assemblies of citalopram and escitalopram in β-cyclodextrin dimeric cavity: Crystallographic and theoretical insights. Carbohydr Polym 2024; 329:121771. [PMID: 38286546 DOI: 10.1016/j.carbpol.2023.121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Cyclodextrin (CD) encapsulation improves physicochemical and pharmacological properties of selective serotonin reuptake inhibitors (SSRIs), which are efficacious in treating depression, a global mental health problem. Here, we scrutinize β-CD inclusion complexes with racemate citalopram (rac-CTP; 1) and escitalopram ((S)-CTP; 2) by combined single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that the 2:2 inclusion complexes of 1 and 2 with similar inclusion modes and topologies are stabilized by various intermolecular interactions of host-guest CH···π, host-host OH···O H-bonds, and guest-guest F···F in the tail-to-tail dimeric asymmetric unit. In the crystals, these dimers are stacked on top of each other, yielding similar channel structures of distinct crystal symmetries, triclinic, P1 (1) and monoclinic, P21 (2), which are further maintained by guest-guest π···π and CN···π interactions. The thermodynamic stabilities evaluated by DFT calculation indicate the vital role of weak intermolecular interactions in the formation and stabilization of the β-CD monomeric and dimeric inclusion complexes. This study provides crystallographic and theoretical evidence for the improved stability and the masked bitterness of CTP through β-CD encapsulation as patented previously and suggests the pharmaceutical implications in the drug delivery and enantioseparation.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Stipaničev D, Dragun Z, Repec S, Ivanković D, Barac F, Kiralj Z, Kralj T, Valić D. Dynamics of drug contamination of the river-water in the rural, semirural and urban areas of the Mrežnica River in Croatia during COVID-19 pandemic (2020-2021). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93652-93666. [PMID: 37515617 DOI: 10.1007/s11356-023-28845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Increased contamination of aquatic ecosystems with pharmaceuticals could have been expected due to the COVID-19 pandemic. Surface water from three domains (rural, semirural, urban) of the Mrežnica River (Croatia) was screened for 253 pharmaceuticals by SPE-UHPLC-MS/MS. At the beginning of the pandemic, the highest concentration of drugs (excluding veterinary) was detected at urban site (291.4 ng/L), followed by semirural (186.5 ng/L) and rural (141.6 ng/L). With the progression of pandemic, contamination increase was observed at all sites, but it was the most obvious at semirural (approximately 400-700 ng/L). The most pronounced concentration increases were observed for non-opioid analgesics, especially ibuprofen. In September 2021, the first notable occurrence of opioid analgesics was recorded. The most represented group of pharmaceuticals at the start of the pandemic (May 2020) was generally stimulants (caffeine, cotinine). In September 2021, the predominant group was analgesics at all sites (45-84%), whereas stimulants decreased to undetectable levels. The results of this study indicated that the epidemiological measures and medical treatments that were widely imposed/applied caused notable increase of the surface water contamination with drugs of a small river with limited dilution capacity, indirectly pointing to the changes that occurred in the behaviour and habits of the inhabitants of the affected areas.
Collapse
Affiliation(s)
- Draženka Stipaničev
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | - Siniša Repec
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Tomislav Kralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|
3
|
Aree T. How cyclodextrin encapsulation improves molecular stability of apple polyphenols phloretin, phlorizin, and ferulic acid: Atomistic insights through structural chemistry. Food Chem 2023; 409:135326. [PMID: 36610226 DOI: 10.1016/j.foodchem.2022.135326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Phloretin (PRT), phlorizin (PRZ), and ferulic acid (FEA) prevalent in apples are unstable and less soluble in water, which can be improved by cyclodextrin (CD) encapsulation. This study aimed to provide atomistic insights of β-CD-PRT (1), β-CD-PRZ (2), and α-CD-FEA (3) complexes. Single-crystal X-ray diffraction (XRD) revealed that one PRZ (2) and one FEA (3) insert the aromatic B-ring and C=C-C=O(O) group respectively into the β-CD (2) and α-CD (3) cavities, whereas a half-occupied PRT (1) inserts the B-ring across the β-CD cavity. The induced-fit process yielded thermodynamically stable complexes 2 > 1 > 3, in agreement with the density functional theory (DFT)-optimized structures with the corresponding number of intermolecular OH···O H-bonds (7 > 3 > 1). Perpendicular conformations of the pharmaceutically active forms of PRT (1) and PRZ (2) are first observed crystallographically. This study confirmed the potential applications of CDs as molecular stabilizers and aqueous solubilizers for the improved bioavailability and efficient delivery of food bioactive compounds.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Assaf KI. Host-guest complexation between cucurbit[7]uril and doxepin induced supramolecular assembly. Org Biomol Chem 2022; 20:5796-5802. [PMID: 35833381 DOI: 10.1039/d2ob01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular complexation of doxepin (DOX) with cucurbit[7]uril (CB7) was investigated in aqueous solution. The results indicated the formation of a host-guest complex, as verified by complexation-induced chemical shifts in the NMR experiments and supported by quantum-chemical calculations, in which the alkylammonium tail of DOX was found to be encapsulated inside the CB7 cavity, while the tricyclic moiety remained exposed to bulk water. Isothermal titration calorimetry and dye-displacement experiments provided a moderate binding affinity (104 M-1). Interestingly, the partial encapsulation of DOX by the CB7 macrocycle led to the development of a supramolecular assembly at a low millimolar concentration, as verified by NMR and dynamic light scattering (DLS) measurements, which showed homogeneous size distributions with an average diameter of 1700 nm.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| |
Collapse
|
5
|
Current Status of Quantum Chemical Studies of Cyclodextrin Host-Guest Complexes. Molecules 2022; 27:molecules27123874. [PMID: 35744998 PMCID: PMC9229288 DOI: 10.3390/molecules27123874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
This article aims to review the application of various quantum chemical methods (semi-empirical, density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2)) in the studies of cyclodextrin host-guest complexes. The details of applied approaches such as functionals, basis sets, dispersion corrections or solvent treatment methods are analyzed, pointing to the best possible options for such theoretical studies. Apart from reviewing the ways that the computations are usually performed, the reasons for such studies are presented and discussed. The successful applications of theoretical calculations are not limited to the determination of stable conformations but also include the prediction of thermodynamic properties as well as UV-Vis, IR, and NMR spectra. It has been shown that quantum chemical calculations, when applied to the studies of CD complexes, can provide results unobtainable by any other methods, both experimental and computational.
Collapse
|
6
|
Aree T. Inclusion Scenarios and Conformational Flexibility of the SSRI Paroxetine as Perceived from Polymorphism of β-Cyclodextrin–Paroxetine Complex. Pharmaceuticals (Basel) 2022; 15:ph15010098. [PMID: 35056155 PMCID: PMC8781563 DOI: 10.3390/ph15010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Depression, a global mental health problem, is prevalent during the coronavirus disease 2019 (COVID-19) pandemic and can be efficiently treated by selective serotonin reuptake inhibitors (SSRIs). Our study series aims at forwarding insights on the β-cyclodextrin (β-CD)–SSRI inclusion complexes by X-ray crystallography combined with density functional theory (DFT) calculation. Here, we report a new crystal form (II) of the 1:1 β-CD–paroxetine (PXT) complex, which is inspired by the reported 2:1 β-CD–PXT complex (crystal form I), reflecting an elusive phenomenon of the polymorphism in CD inclusion complexes. The β-CD–PXT polymorphism stems from the PXT conformational flexibility, which is defined by torsion angles κ, ε around the -CH2–O- group bridging the A- and C–D-rings, of which those of PXT in I and II are totally different. While PXT (II) in an open V-shaped conformation that has the B-ring shallowly inserted in the β-CD cavity, PXT (I) in a closed U-shaped structure is mostly entirely embedded in the β-CD dimeric cavity, of which the A-ring is deeply inserted in the main β-CD cavity. However, PXT molecules in both crystal forms are similarly maintained in the CD cavity via host–guest N–H···O5/O6 H-bonds and C/O–H···π(B/C) interactions and β-CDs have similar 3D arrangements, channel (II) vs. screw-channel (I). Further theoretical explorations on the β-CD–PXT thermodynamic stabilities and the PXT conformational stabilities based on their potential energy surfaces (PESs) have been completed by DFT calculations. The 2:1 β-CD–PXT complex with the greater presence of dispersion interactions is more energetically favorable than the unimolar complex. Conversely, whereas free PXT, PXT (II) and PXT in complex with serotonin transporter are more energetically stable, PXT (I) is least stable and stabilized in the β-CD cavity. As SSRIs could lessen the COVID-19 severity, the CD inclusion complexation not only helps to improve the drug bioavailability, but also promotes the use of antidepressants and COVID-19 medicines concurrently.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
8
|
Advancing insights on β-cyclodextrin inclusion complexes with SSRIs through lens of X-ray diffraction and DFT calculation. Int J Pharm 2021; 609:121113. [PMID: 34543619 PMCID: PMC8450047 DOI: 10.1016/j.ijpharm.2021.121113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Depression-the global crisis hastened by the coronavirus outbreak, can be efficaciously treated by the selective serotonin reuptake inhibitors (SSRIs). Cyclodextrin (CD) inclusion complexation is a method of choice for reducing side effects and improving bioavailability of drugs. Here, we investigate in-depth the β-CD encapsulation of sertraline (STL) HCl (1) and fluoxetine (FXT) HCl (2) by single-crystal X-ray diffraction and DFT complete-geometry optimization, in comparison to the reported complex of paroxetine (PXT) base. X-ray analysis unveiled the 2:2 β-CD-STL/FXT complexes with two drug molecules inserting their halogen-containing aromatic ring in the β-CD dimeric cavity, which are stabilized by the interplay of intermolecular O2-H⋯N1-H⋯O3 H-bonds, C3/C5-H⋯π and halogen⋯halogen interactions. Similarly, the 1:1 β-CD-tricyclic-antidepressant (TCA) complexes have an exclusive inclusion mode of the aromatic ring, which is maintained by C3/C5-H⋯π interactions. By contrast, the 2:1 β-CD-PXT complex has a total inclusion that is stabilized by host-guest O6-H⋯N1-H⋯O5 H-bonds and C3-H⋯π interactions. The inherent stabilization energies of 1 and 2 evaluated using DFT calculation suggested that the improved thermodynamic stabilities via CD encapsulation facilitates the reduction of drug side effects. Moreover, the SSRI conformational flexibilities are thoroughly discussed for understanding of their pharmacoactivity.
Collapse
|