1
|
Tymecka M, Hac-Wydro K, Obloza M, Bonarek P, Kaminski K. The Use of a Barley-Based Well to Define Cationic Betaglucan to Study Mammalian Cell Toxicity Associated with Interactions with Biological Structures. Pharmaceutics 2023; 15:2009. [PMID: 37514195 PMCID: PMC10385077 DOI: 10.3390/pharmaceutics15072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules' interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this. In this work, three well-defined cationic derivatives of barley-derived betaglucans obtained in a reaction with glycidyltrimethylammonium chloride (BBGGTMAC) with different degrees of cationization (50, 70, and 100% per one glucose unit) and electrostatic charge were studied. The studies address interactions of these polymers with proteins (bovine serum proteins and BSA), nucleic acids (DNA), glycosaminoglycans (heparin), and biological membranes. The results described in this study make it possible to indicate that toxicity is most strongly influenced by interactions with biological membranes and is closely related to the electrostatic charge of the macromolecule. The presentation of this observation was the goal of this publication. This paper also shows, using fluorescently labeled variants of polymers, the penetration and impact on cell structure (only for the polymer with the highest substitution binding to cell membranes is observed) by using confocal and SEM (for the polymer with the highest degree of substitution, and the appearance of additional structures on the surface of the cell membrane is observed). The labeled polymers are also tools used together with dynamic light scattering and calorimetric titration to study their interaction with other biopolymers. As for the interactions with biological membranes, lipid Langmuir monolayers as model membrane systems were used.
Collapse
Affiliation(s)
- Malgorzata Tymecka
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Hac-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Obloza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Liang Z, Zhang Z, Lu P, Yang J, Han L, Liu S, Zhou T, Li J, Zhang J. The effect of charges on the corneal penetration of solid lipid nanoparticles loaded econazole after topical administration in rabbits. Eur J Pharm Sci 2023:106494. [PMID: 37315870 DOI: 10.1016/j.ejps.2023.106494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Fungal keratitis is an infectious disease caused by pathogenic fungi with a high blindness rate. Econazole (ECZ) is an imidazole antifungal drug with insoluble ability. Econazole-loaded solid lipid nanoparticles (E-SLNs) were prepared by microemulsion method, then modified with positive and negative charge. The mean diameter of cationic E-SLNs, nearly neutral E-SLNs and anionic E-SLNs were 18.73±0.14, 19.05±0.28, 18.54±0.10 nm respectively. The Zeta potential of these different charged SLNs formulations were 19.13±0.89, -2.20±0.10, -27.40±0.67 mV respectively. The Polydispersity Index (PDI) of these three kinds of nanoparticles were about 0.2. The Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) analysis showed that the nanoparticles were a homogeneous system. Compared with Econazole suspension (E-Susp), SLNs exhibited sustained release capability, stronger corneal penetration and enhanced inhibition of pathogenic fungi without irritation. The antifungal ability was further improved after cationic charge modification compared with E-SLNs. Studies on pharmacokinetics showed that the order of the AUC and t1/2 of different preparations was cationic E-SLNs > nearly neutral E-SLNs > anionic E-SLNs > E-Susp in cornea and aqueous humor. It was shown that SLNs could increase corneal penetrability and ocular bioavailability while these capabilities were further enhanced with positive charge modification compared with negative charge ones.
Collapse
Affiliation(s)
- Zhen Liang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhen Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ping Lu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Han
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Susu Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Tianyang Zhou
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Vrzoňová R, Čížová A, Račková L, Mečárová J, Bieliková S, Bystrický S. Molar-mass-dependent antibacterial activity of cationic dextran derivatives against resistant nosocomial pathogens. Int J Biol Macromol 2023; 235:123854. [PMID: 36858094 DOI: 10.1016/j.ijbiomac.2023.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The rise of various multidrug-resistant bacteria has created a need for new biocompatible and biodegradable antibacterial compounds. Cationic polysaccharides are promising candidates for this role. Therefore, cationic derivatives of commercial dextrans with molar masses of 11 kDa, 76 kDa, 411 kDa, and 1500-2500 kDa and various degrees of substitution (DSQ 0.34-0.52) were prepared and their antimicrobial properties against four gram-negative nosocomial bacteria were tested. As expected, a higher DSQ led to higher efficiency. The best antimicrobial properties were found for derivatives of 411 kDa, followed by 76 kDa and 1500-2000 kDa dextrans. This indicates that there is a certain optimum molar mass with the best antimicrobial properties. However, as molar mass increased, the biocompatibility of cationic dextran steadily decreased, with increased hemagglutination and toxicity being seen for human cells. The derivatives of 76 kDa dextran with higher DSQ (0.40-0.52) were the best antimicrobial agents suitable for further clinical testing.
Collapse
Affiliation(s)
- Romana Vrzoňová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Lucia Račková
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Sandra Bieliková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
4
|
Kamiński K, Hąc-Wydro K, Skóra M, Tymecka M, Obłoza M. Preliminary Studies on the Mechanism of Antifungal Activity of New Cationic β-Glucan Derivatives Obtained from Oats and Barley. ACS OMEGA 2022; 7:40333-40343. [PMID: 36385808 PMCID: PMC9648169 DOI: 10.1021/acsomega.2c05311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
New chemical structures with antifungal properties are highly desirable from the point of view of modern pharmaceutical science, especially due to the increasingly widespread instances of drug resistance in the case of these diseases. One way to solve this problem is to use polymeric drugs, widely described as biocidal, positively charged macromolecules. In this work, we present the synthesis of new cationic β-glucan derivatives that show selective antifungal activity and at the same time low toxicity toward animal and human cells. Two β-glucans isolated from oats and barley and modified using glycidyltrimethylammonium chloride were obtained and evaluated for biocidal properties on the cells of mammals and pathogenic fungi and bacteria. These compounds were found to be nontoxic to fibroblast and bacterial cells but showed selective toxicity to certain species of filamentous fungi (Scopulariopsis brevicaulis) and yeasts (Cryptococcus neoformans). The most important aspect of this work is the attempt to explain the mechanisms of action of these compounds by studying their interaction with biological membranes. This was achieved by examining the interactions with model biological membranes representative of given families of microorganisms using Langmuir monolayers. The data obtained partly show correlations between the results for model systems and biological experiments and allow indicating that the selective antifungal activity of cationic β-glucans is related to their interaction with fungal biological membranes and partly lack of such interaction toward cells of other organisms. In addition, the obtained macromolecules were characterized by spectral methods (Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies) to confirm that the desired structure was obtained, and their degree of modification and molecular weights were determined.
Collapse
Affiliation(s)
- Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2 Street, 30-387Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2 Street, 30-387Kraków, Poland
| | - Magdalena Skóra
- Department
of Infections Control and Mycology, Chair of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121Kraków, Poland
| | - Małgorzata Tymecka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2 Street, 30-387Kraków, Poland
| | - Magdalena Obłoza
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2 Street, 30-387Kraków, Poland
| |
Collapse
|
5
|
Advances in Antifungal Development: Discovery of New Drugs and Drug Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15070787. [PMID: 35890086 PMCID: PMC9318969 DOI: 10.3390/ph15070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
This Special Issue of Pharmaceuticals describes recent advances accomplished in the field of antifungal development, especially the discovery of new drugs and drug repurposing [...]
Collapse
|
6
|
Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia norvegensis Grown on Tofu Wastewater. Foods 2021; 10:foods10112619. [PMID: 34828900 PMCID: PMC8618602 DOI: 10.3390/foods10112619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Yeast can be isolated from tofu wastewater and the cell wall in the form of β-glucan can act as a natural decontaminant agent. This study aimed to isolate and characterize native yeast from tofu wastewater, which can be extracted to obtain β-glucan and then identify the yeast and its β-glucan activity regarding antifungal ability against Aspergillus flavus and aflatoxin-reducing activity towards aflatoxin B1 (AFB1) and B2 (AFB2). Tofu wastewater native yeast was molecularly identified, and the growth observed based on optical density for 96 h and the pH also measured. β-glucan was extracted from native yeast cell walls with the acid-base method and then the inhibition activity towards A. flavus was tested using the well diffusion method and microscopic observation. AFB1 and AFB2 reduction were identified using HPLC LC-MS/MS. The results showed that the native yeast isolated was Pichia norvegensis with a β-glucan yield of 6.59%. Pichia norvegensis and its β-glucan showed an inhibition zone against Aspergillus flavus of 11.33 ± 4.93 and 7.33 ± 3.51 mm, respectively. Total aflatoxin-reducing activity was also shown by Pichia norvegensis of 26.85 ± 2.87%, and β-glucan of 27.30 ± 1.49%, while AFB1- and AFB2-reducing activity by Pichia norvegensis was 36.97 ± 3.07% and 27.13 ± 1.69%, and β-glucan was 27.13 ± 1.69% and 32.59 ± 4.20%, respectively.
Collapse
|