1
|
Kohajda Z, Corici C, Kristóf A, Virág L, Husti Z, Baczkó I, Sághy L, Varró A, Jost N. The Properties of the Transient Outward, Inward Rectifier and Acetylcholine-Sensitive Potassium Currents in Atrial Myocytes from Dogs in Sinus Rhythm and Experimentally Induced Atrial Fibrillation Dog Models. Pharmaceuticals (Basel) 2024; 17:1138. [PMID: 39338302 PMCID: PMC11434634 DOI: 10.3390/ph17091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common chronic/recurrent arrhythmia, which significantly impairs quality of life and increases cardiovascular morbidity and mortality. Therefore, the aim of the present study was to investigate the properties of three repolarizing potassium currents which were shown to contribute to AF-induced electrical remodeling, i.e., the transient outward (Ito), inward rectifier (IK1) and acetylcholine-sensitive (IK,ACh) potassium currents in isolated atrial myocytes obtained from dogs either with sinus rhythm (SR) or following chronic atrial tachypacing (400/min)-induced AF. METHODS Atrial remodeling and AF were induced by chronic (4-6 weeks of) right atrial tachypacing (400/min) in dogs. Transmembrane ionic currents were measured by applying the whole-cell patch-clamp technique at 37 °C. RESULTS The Ito current was slightly downregulated in AF cells when compared with that recorded in SR cells. This downregulation was also associated with slowed inactivation kinetics. The IK1 current was found to be larger in AF cells; however, this upregulation was not statistically significant in the voltage range corresponding with atrial action potential (-80 mV to 0 mV). IK,ACh was activated by the cholinergic agonist carbachol (CCh; 2 µM). In SR, CCh activated a large current either in inward or outward directions. The selective IK,ACh inhibitor tertiapin (10 nM) blocked the outward CCh-induced current by 61%. In atrial cardiomyocytes isolated from dogs with AF, the presence of a constitutively active IK,ACh was observed, blocked by 59% with 10 nM tertiapin. However, in "AF atrial myocytes", CCh activated an additional, significant ligand-dependent and tertiapin-sensitive IK,ACh current. CONCLUSIONS In our dog AF model, Ito unlike in humans was downregulated only in a slight manner. Due to its slow inactivation kinetics, it seems that Ito may play a more significant role in atrial repolarization than in ventricular working muscle myocytes. The presence of the constitutively active IK,ACh in atrial myocytes from AF dogs shows that electrical remodeling truly developed in this model. The IK,ACh current (both ligand-dependent and constitutively active) seems to play a significant role in canine atrial electrical remodeling and may be a promising atrial selective drug target for suppressing AF.
Collapse
Affiliation(s)
- Zsófia Kohajda
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
| | - Claudia Corici
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - Attila Kristóf
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
| | - István Baczkó
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - László Sághy
- Cardiac Electrophysiology Division, Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6701 Szeged, Hungary
| | - András Varró
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| | - Norbert Jost
- HUN-REN-SZTE Research Group of Cardiovascular Pharmacology, H-6701 Szeged, Hungary
- Department of Pharmacology & Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, H-6701 Szeged, Hungary (I.B.)
- Pharmaceutical and Medical Device Developments Competence Centre of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6701 Szeged, Hungary
| |
Collapse
|
2
|
López-Galvez R, Rivera-Caravaca JM, Roldán V, Orenes-Piñero E, Esteve-Pastor MA, López-García C, Saura D, González J, Lip GYH, Marín F. Imaging in atrial fibrillation: A way to assess atrial fibrosis and remodeling to assist decision-making. Am Heart J 2023; 258:1-16. [PMID: 36526006 DOI: 10.1016/j.ahj.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 05/11/2023]
Abstract
The 2020 ESC atrial fibrillation (AF) guidelines suggest the novel 4S-AF scheme for the characterization of AF. Imaging techniques could be helpful for this objective in everyday clinical practice, and information derived from these techniques reflects basic aspects of the pathophysiology of AF, which may facilitate treatment decision-making, and optimal management of AF patients. The aim of this review is to provide an overview of the mechanisms associated with atrial fibrosis and to describe imaging techniques that may help the management of AF patients in clinical practice. Transthoracic echocardiography is the most common procedure given its versatility, safety, and simplicity. Transesophageal echocardiography provides higher resolution exploration, and speckle tracking echocardiography can provide incremental functional and prognostic information over conventional echocardiographic parameters. In addition, LA deformation imaging, including LA strain and strain rate, are related to the extent of fibrosis. On the other hand, multidetector-row computed tomography and cardiac magnetic resonance provide higher resolution data and more accurate assessment of the dimensions, structure, and spatial relationships of the LA. Imaging is central when deciding on catheter ablation or cardioversion, and helps in selecting those patients who will really benefit from these procedures. Moreover, imaging enhances the understanding of the underlying mechanisms of atrial remodeling and might assists in refining the risk of stroke, which help to select the best medical therapies/interventions. In summary, evaluation of LA enlargement, LA remodeling and fibrosis with imaging techniques adds clinical and prognostic information and should be assessed as a part of routine comprehensive AF evaluation.
Collapse
Affiliation(s)
- Raquel López-Galvez
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain; School of Nursing, University of Murcia, Murcia, Spain; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.
| | - Vanessa Roldán
- Department of Hematology and Clinical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - María Asunción Esteve-Pastor
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Cecilia López-García
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Daniel Saura
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Josefa González
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| |
Collapse
|
3
|
Wang Z, Tong Q, Li T, Qian Y. Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation. Front Cardiovasc Med 2022; 9:906350. [PMID: 36386310 PMCID: PMC9645120 DOI: 10.3389/fcvm.2022.906350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common sustained tachyarrhythmias worldwide, and its prevalence is positively correlated with aging. AF not only significantly reduces the quality of life of patients but also causes a series of complications, such as thromboembolism, stroke, and heart failure, increases the average number of hospitalizations of patients, and places a huge economic burden on patients and society. Traditional drug therapy and ablation have unsatisfactory success rates, high recurrence rates, and the risk of serious complications. Surgical treatment is highly traumatic. The nano drug delivery system has unique physical and chemical properties, and in the application of AF treatment, whether it is used to assist in enhancing the ablation effect or for targeted therapy, it provides a safer, more effective and more economical treatment strategy.
Collapse
|
4
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|