1
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Gui M, Lv L, Qin L, Wang C. Vestibular dysfunction in Parkinson's disease: a neglected topic. Front Neurol 2024; 15:1398764. [PMID: 38846039 PMCID: PMC11153727 DOI: 10.3389/fneur.2024.1398764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Dizziness and postural instability are frequently observed symptoms in patient with Parkinson's disease (PD), potentially linked to vestibular dysfunction. Despite their significant impact on quality of life, these symptoms are often overlooked and undertreated in clinical practice. This review aims to summarize symptoms associated with vestibular dysfunction in patients with PD and discusses vestibular-targeted therapies for managing non-specific dizziness and related symptoms. We conducted searches in PubMed and Web of Science using keywords related to vestibular dysfunction, Parkinson's disease, dizziness, and postural instability, alongside the reference lists of relevant articles. The available evidence suggests the prevalence of vestibular dysfunction-related symptoms in patients with PD and supports the idea that vestibular-targeted therapies may be effective in improving PD symptoms.
Collapse
Affiliation(s)
- Meilin Gui
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center on Mental Disorders, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
3
|
李 洁, 时 海. [Research advances in the mechanism of vestibular compensation and treatment]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:256-260. [PMID: 38433698 PMCID: PMC11233209 DOI: 10.13201/j.issn.2096-7993.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 03/05/2024]
Abstract
Unlike other sensory systems, since the vestibular system maintains the tension balance of the entire system in a"push-pull" mode, local dysfunction in the system will cause the balance of the entire system to collapse. Unilateral peripheral vestibular dysfunction will cause severe vestibular symptoms, but it can recover spontaneously within a few days to several weeks. This phenomenon is called "vestibular compensation"(VC). Since the peripheral vestibular impact in most cases is irreversible, it is widely believed that the central mechanism plays a key role in the vestibular compensation process. Static symptom is fully compensated within a few weeks, which is in parallel with the restored balance in the resting discharge of the vestibular nucleus on both sides; the incomplete compensation of dynamic deficits takes longer and is achieved mainly through the mechanism of sensory substitution and behavioral substitution. Here we briefly reviewed the mechanism of vestibular compensation and treatment in order to provide an insight into further study and clinical treatment strategies.
Collapse
Affiliation(s)
- 洁 李
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 海波 时
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
5
|
El Fouikar S, Duranthon V, Helies V, Jammes H, Couturier-Tarrade A, Gayrard V, Van Acker N, Frenois FX, Archilla C, Rousseau-Ralliard D, Gatimel N, Léandri R. Multigenerational Effects of a Complex Human-Relevant Exposure during Folliculogenesis and Preimplantation Embryo Development: The FEDEXPO Study. TOXICS 2023; 11:toxics11050425. [PMID: 37235240 DOI: 10.3390/toxics11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Animal toxicological studies often fail to mimic the complexity of the human exposome, associating low doses, combined molecules and long-term exposure. Since the reproductive potential of a woman begins in the fetal ovary, the literature regarding the disruption of its reproductive health by environmental toxicants remains limited. Studies draw attention to follicle development, a major determinant for the quality of the oocyte, and the preimplantation embryo, as both of them are targets for epigenetic reprogramming. The "Folliculogenesis and Embryo Development EXPOsure to a mixture of toxicants: evaluation in the rabbit model" (FEDEXPO) project emerged from consideration of these limitations and aims to evaluate in the rabbit model the impacts of an exposure to a mixture of known and suspected endocrine disrupting chemicals (EDCs) during two specific windows, including folliculogenesis and preimplantation embryo development. The mixture combines eight environmental toxicants, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), 2,2'4,4'-tetrabromodiphenyl ether (BDE-47), di(2-ethylhexyl) phthalate (DEHP) and bisphenol S (BPS), at relevant exposure levels for reproductive-aged women based on biomonitoring data. The project will be organized in order to assess the consequences of this exposure on the ovarian function of the directly exposed F0 females and monitor the development and health of the F1 offspring from the preimplantation stage. Emphasis will be made on the reproductive health of the offspring. Lastly, this multigenerational study will also tackle potential mechanisms for the inheritance of health disruption via the oocyte or the preimplantation embryo.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | | | - Virginie Helies
- GenPhySE (Génétique Physiologie et Système d'Elevage), Université de Toulouse, INRAE, ENVT, INPT, 31326 Castanet-Tolosan, France
| | - Hélène Jammes
- BREED INRAE, UVSQ, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'Anatomie Pathologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'Anatomie Pathologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | | | | | - Nicolas Gatimel
- DEFE (Développement Embryonnaire, Fertilité et Environnement), UMR 1203 Inserm, Universités Toulouse et Montpellier, Toulouse Teaching Hospital Group, 31059 Toulouse, France
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| |
Collapse
|
6
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
7
|
Hatat B, Boularand R, Bringuier C, Chanut N, Chabbert C, Tighilet B. Effect of Fluoxetine and Acacetin on Central Vestibular Compensation in an Animal Model of Unilateral Peripheral Vestibulopathy. Biomedicines 2022; 10:2097. [PMID: 36140199 PMCID: PMC9495702 DOI: 10.3390/biomedicines10092097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Damage to the peripheral vestibular system is known to generate a syndrome characterized by postural, locomotor, oculomotor, perceptual and cognitive deficits. Current pharmacological therapeutic solutions for these pathologies lack specificity and efficacy. Recently, we demonstrated that apamin, a specific SK channel blocker, significantly reduced posturo-locomotor and oculomotor deficits in the cat and the rat. The aim of the present study was to test the antivertigo potential of compounds belonging to the SK antagonists family, such as Acacetin and Fluoxetine. Young rats were subjected to unilateral ototoxic lesions of the vestibular organ using transtympanic administration of arsanilic acid (TTA) to evoke unilateral vestibular loss (UVL). Vestibular syndrome was monitored using behavioural evaluation allowing appreciation of the evolution of static and dynamic posturo-locomotor deficits. A significant effect of the TTA insult was only found on the distance moved, the mean body velocity and the not moving time. From day 2 to week 2 after TTA, the distance moved and the mean body velocity were significantly decreased, while the not moving time was significantly increased. Acacetin does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine two weeks before TTA and over three weeks after TTA (preventive group) does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine from three weeks after TTA significantly delayed the functional recovery. This study demonstrates that Acacetin or Fluoxetine in TTA vestibulo-injured rats does not bring any significant benefit on the posture and locomotor balance deficits.
Collapse
Affiliation(s)
| | | | | | | | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire, Unité GDR2074, CNRS, 13003 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire, Unité GDR2074, CNRS, 13003 Marseille, France
| |
Collapse
|