1
|
Sestito S, Cirone I, Sagona S, Runfola M, Raffellini L, La Rocca V, Citi V, Martelli A, Daniele S, Lai M, Calderone V, Martini C, Manera C, Rapposelli S. Design, synthesis and biological evaluation of new H2S-releasing rivastigmine derivatives as neuroprotective molecules. Eur J Med Chem 2025; 283:117175. [PMID: 39705734 DOI: 10.1016/j.ejmech.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/22/2024]
Abstract
Alzheimer's disease (AD) represents one of the main challenges for the 21st century medical research as no disease-modifying agent has been successfully progressed to the market, while the number of people affected by AD is estimated to grow exponentially over the next years. The complex network of triggering factors involved in the insurgence and progression of AD can be rightly addressed as one of the main reasons behind the difficulty in identifying new pharmacological approaches. For this reason, the discovery and development of drugs endowed with pleiotropic activity remain the most valuable, but at the same time challenging, approaches to tackle down AD. Interestingly, the combination of active pharmacophores through molecular hybridization - or Multi-Target Directed Ligand strategy (MTDL) - has not been explored enough for this disease, despite proving to be a successfully strategy in other field, such as oncology. To contribute to the development of new strategies against AD, we decided to explore the hybridization of the marketed drug rivastigmine - prescribed to ameliorate AD symptomatology - with moieties capable to release hydrogen sulfide (H2S), a gasotransmitter with a key role in the neurological physiology of ageing. In particular, we identified compound 1, as a potent small molecule capable of inhibit AChE, preventing inflammation and ROS production in cultured neurons and microglia, triggering autophagy response and blocking Aβ fibrils propagation. Interestingly, the beneficial effects observed in vitro have been confirmed in vivo, since the rivastigmine derivative 1 improved the lifespan in a Caenorhabditis elegans model of AD.
Collapse
Affiliation(s)
- Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23/a, 07100, Sassari, Italy
| | - Italo Cirone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Simona Sagona
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | | | - Lorenzo Raffellini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Veronica La Rocca
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy.
| |
Collapse
|
2
|
Camussi D, Naef V, Brogi L, Della Vecchia S, Marchese M, Nicoletti F, Santorelli FM, Licitra R. Delving into the Complexity of Valproate-Induced Autism Spectrum Disorder: The Use of Zebrafish Models. Cells 2024; 13:1349. [PMID: 39195239 PMCID: PMC11487397 DOI: 10.3390/cells13161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to valproic acid (VPA) has been extensively associated with the development of the disorder. The zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects during embryonic development and to identify new potential biomarkers associated with ASD-like features. Dose-response analyses were performed in vivo to study larval phenotypes and mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae were monitored daily to assess survival and hatching rates, and numerous analyses and tests were conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours. VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Diletta Camussi
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Valentina Naef
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy;
| | - Stefania Della Vecchia
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy;
- IRCSS Neuromed, “La Sapienza” University of Rome, 86077 Pozzilli, Italy
| | - Filippo M. Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
Marchese M, Bernardi S, Ogi A, Licitra R, Silvi G, Mero S, Galatolo D, Gammaldi N, Doccini S, Ratto GM, Rapposelli S, Neuhauss SCF, Zang J, Rocchiccioli S, Michelucci E, Ceccherini E, Santorelli FM. Targeting autophagy impairment improves the phenotype of a novel CLN8 zebrafish model. Neurobiol Dis 2024; 197:106536. [PMID: 38763444 PMCID: PMC11163972 DOI: 10.1016/j.nbd.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.
Collapse
Affiliation(s)
- Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| | - Sara Bernardi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Asahi Ogi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Giada Silvi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Serena Mero
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Daniele Galatolo
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Stefano Doccini
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | | | - Stephan C F Neuhauss
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | - Jingjing Zang
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | | | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Institute of Chemistry of Organometallic Compounds, National Research Council, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Filippo M Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| |
Collapse
|
4
|
Gammaldi N, Doccini S, Bernardi S, Marchese M, Cecchini M, Ceravolo R, Rapposelli S, Ratto GM, Rocchiccioli S, Pezzini F, Santorelli FM. Dem-Aging: autophagy-related pathologies and the "two faces of dementia". Neurogenetics 2024; 25:39-46. [PMID: 38117343 DOI: 10.1007/s10048-023-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - S Bernardi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - M Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - M Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - R Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - G M Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology (Child Neurology and Psychiatry), University of Verona, Verona, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
5
|
Vilella A, Bodria M, Papotti B, Zanotti I, Zimetti F, Remaggi G, Elviri L, Potì F, Ferri N, Lupo MG, Panighel G, Daini E, Vandini E, Zoli M, Giuliani D, Bernini F. PCSK9 ablation attenuates Aβ pathology, neuroinflammation and cognitive dysfunctions in 5XFAD mice. Brain Behav Immun 2024; 115:517-534. [PMID: 37967665 DOI: 10.1016/j.bbi.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Increasing evidence highlights the importance of novel players in Alzheimer's disease (AD) pathophysiology, including alterations of lipid metabolism and neuroinflammation. Indeed, a potential involvement of Proprotein convertase subtilisin/kexin type 9 (PCSK9) in AD has been recently postulated. Here, we first investigated the effects of PCSK9 on neuroinflammation in vitro. Then, we examined the impact of a genetic ablation of PCSK9 on cognitive performance in a severe mouse model of AD. Finally, in the same animals we evaluated the effect of PCSK9 loss on Aβ pathology, neuroinflammation, and brain lipids. METHODS For in vitro studies, U373 human astrocytoma cells were treated with Aβ fibrils and human recombinant PCSK9. mRNA expression of the proinflammatory cytokines and inflammasome-related genes were evaluated by q-PCR, while MCP-1 secretion was measured by ELISA. For in vivo studies, the cognitive performance of a newly generated mouse line - obtained by crossing 5XFADHet with PCSK9KO mice - was tested by the Morris water maze test. After sacrifice, immunohistochemical analyses were performed to evaluate Aβ plaque deposition, distribution and composition, BACE1 immunoreactivity, as well as microglia and astrocyte reactivity. Cholesterol and hydroxysterols levels in mouse brains were quantified by fluorometric and LC-MS/MS analyses, respectively. Statistical comparisons were performed according to one- or two-way ANOVA, two-way repeated measure ANOVA or Chi-square test. RESULTS In vitro, PCSK9 significantly increased IL6, IL1B and TNFΑ mRNA levels in Aβ fibrils-treated U373 cells, without influencing inflammasome gene expression, except for an increase in NLRC4 mRNA levels. In vivo, PCSK9 ablation in 5XFAD mice significantly improved the performance at the Morris water maze test; these changes were accompanied by a reduced corticohippocampal Aβ burden without affecting plaque spatial/regional distribution and composition or global BACE1 expression. Furthermore, PCSK9 loss in 5XFAD mice induced decreased microgliosis and astrocyte reactivity in several brain regions. Conversely, knocking out PCSK9 had minimal impact on brain cholesterol and hydroxysterol levels. CONCLUSIONS In vitro studies showed a pro-inflammatory effect of PCSK9. Consistently, in vivo data indicated a protective role of PCSK9 ablation against cognitive impairments, associated with improved Aβ pathology and attenuated neuroinflammation in a severe mouse model of AD. PCSK9 may thus be considered a novel pharmacological target for the treatment of AD.
Collapse
Affiliation(s)
- Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| | - Giulia Remaggi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Lisa Elviri
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, 43121, Parma, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35129, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | | | - Giovanni Panighel
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Eleonora Vandini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
6
|
Kim B, Ko YH, Si J, Na J, Ortore G, Chiellini G, Kim JH. Thyroxine metabolite-derived 3-iodothyronamine (T1AM) and synthetic analogs as efficient suppressors of transthyretin amyloidosis. Comput Struct Biotechnol J 2023; 21:4717-4728. [PMID: 37822560 PMCID: PMC10562617 DOI: 10.1016/j.csbj.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Aggregation and fibrillization of transthyretin (TTR) is a fatal pathogenic process that can cause cardiomyopathic and polyneuropathic diseases in humans. Although several therapeutic strategies have been designed to prevent and treat related pathological events, there is still an urgent need to develop better strategies to improve potency and wider applicability. Here, we present our study demonstrating that 3-iodothyronamine (T1AM) and selected thyronamine-like compounds can effectively prevent TTR aggregation. T1AM is one of the thyroid hormone (TH) metabolites, and T1AM and its analogs, such as SG2, SG6, and SG12, are notable molecules for their beneficial activities against metabolic disorders and neurodegeneration. Using nuclear magnetic resonance (NMR) spectroscopy and biochemical analysis, we confirmed that T1AM analogs could bind to and suppress acid-induced aggregation of TTR. In addition, we employed computational approaches to further understand the detailed mechanisms of the interaction between T1AM analogs and TTR. This study demonstrates that T1AM analogs, whose beneficial effects against several pathological processes have already been proven, may have additional benefits against TTR aggregation and fibrillization. Moreover, we believe that our work provides invaluable insights to enhance the pleiotropic activity of T1AM and structurally related analogs, relevant for their therapeutic potential, with particular reference to the ability to prevent TTR aggregation.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Young Ho Ko
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jinbeom Si
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jongbum Na
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | | | | | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Daini E, Vandini E, Bodria M, Liao W, Baraldi C, Secco V, Ottani A, Zoli M, Giuliani D, Vilella A. Melanocortin receptor agonist NDP-α-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front Immunol 2023; 13:1082036. [PMID: 36703981 PMCID: PMC9871936 DOI: 10.3389/fimmu.2022.1082036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most frequent cause of dementia and still lacks effective therapy. Clinical signs of AD include low levels of endogenous melanocortins (MCs) and previous studies have shown that treatment with MC analogs induces neuroprotection in the early stages of AD. Methods We investigated the neuroprotective role of MCs in two transgenic mouse models of severe AD using 5 and 7 month-old (mo) 5XFAD mice and 9 and 12 mo 3xTg mice. These mice were subjected to a chronic stimulation of MC receptors (MCRs) with MC analogue Nle4-D-Phe7-α-melanocyte stimulating hormone (NDP-α-MSH, 340 μg/kg, i.p.). Mouse behavior and ex-vivo histological and biochemical analyses were performed after 50 days of treatment. Results Our analysis demonstrated an improvement in cognitive abilities of AD mice at late stage of AD progression. We also showed that these protective effects are associated with decreased levels of hyperphosphorylated Tau but not with Aβ burden, that was unaffected in the hippocampus and in the cortex of AD mice. In addition, an age-dependent NDP effect on glial reactivity was observed only in 3xTg mice whereas a global downregulation of p38 mitogen-activated protein kinase was selectively observed in 7 mo 5XFAD and 14 mo 3xTg mice. Conclusion Our results suggest that MCR stimulation by NDP-α-MSH could represent a promising therapeutic strategy in managing cognitive decline also at late stage of AD, whereas the effects on neuroinflammation may be restricted to specific stages of AD progression.
Collapse
Affiliation(s)
- Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Wenjie Liao
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Ottani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy,*Correspondence: Antonietta Vilella,
| |
Collapse
|
8
|
Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions. Pharmacol Rep 2022; 74:847-858. [PMID: 35771431 DOI: 10.1007/s43440-022-00377-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Thyroid hormones (THs) play an important role in the regulation of energy metabolism. They also take part in processes associated with the central nervous system (CNS), including survival and differentiation of neurons and energy expenditure. It has been reported that a correlation exists between the functioning of the thyroid gland and the symptoms of CNS such as cognitive impairment, depression, and dementia. Literature data also indicate the influence of THs on the pathogenesis of CNS diseases, such as Alzheimer's disease, epilepsy, depression, and Parkinson's disease. This review describes the relationship between THs and metabolism in the CNS, the effect of THs on the pathological conditions of the CNS, and novel options for treating these conditions with TH derivatives.
Collapse
|