1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zlotnikov ID, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations. Pharmaceuticals (Basel) 2023; 16:1651. [PMID: 38139778 PMCID: PMC10747112 DOI: 10.3390/ph16121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1-10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15-20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Zlotnikov ID, Dobryakova NV, Ezhov AA, Kudryashova EV. Achievement of the Selectivity of Cytotoxic Agents against Cancer Cells by Creation of Combined Formulation with Terpenoid Adjuvants as Prospects to Overcome Multidrug Resistance. Int J Mol Sci 2023; 24:ijms24098023. [PMID: 37175727 PMCID: PMC10178335 DOI: 10.3390/ijms24098023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oncological diseases are difficult to treat even with strong drugs due to development the multidrug resistance (MDR) of cancer cells. A strategy is proposed to increase the efficiency and selectivity of cytotoxic agents against cancer cells to engage the differences in the morphology and microenvironment of tumor and healthy cells, including the pH, membrane permeability, and ion channels. Using this approach, we managed to develop enhanced formulations of cytotoxic agents with adjuvants (which are known as efflux inhibitors and as ion channel inhibitors in tumors)-with increased permeability in A549 and a protective effect on healthy HEK293T cells. The composition of the formulation is as follows: cytotoxic agents (doxorubicin (Dox), paclitaxel (Pac), cisplatin) + adjuvants (allylbenzenes and terpenoids) in the form of inclusion complexes with β-cyclodextrin. Modified cyclodextrins make it possible to obtain soluble forms of pure substances of the allylbenzene and terpenoid series and increase the solubility of cytotoxic agents. A comprehensive approach based on three methods for studying the interaction of drugs with cells is proposed: MTT test-quantitative identification of surviving cells; FTIR spectroscopy-providing information on the molecular mechanisms inaccessible to study by any other methods (including binding to DNA, surface proteins, or lipid membrane); confocal microscopy for the visualization of observed effects of Dox accumulation in cancer or healthy cells depending on the drug formulation as a direct control of the correctness of interpretation of the results obtained by the two other methods. We found that eugenol (EG) and apiol increase the intracellular concentration of cytostatic in A549 cells by 2-4 times and maintain it for a long time. However, an important aspect is the selectivity of the enhancing effect of adjuvants on tumor cells in relation to healthy ones. Therefore, the authors focused on adjuvant's effect on the control healthy cells (HEK293T): EG and apiol demonstrate "protective" properties from cytostatic penetration by reducing intracellular concentrations by about 2-3 times. Thus, a combined formulation of cytostatic drugs has been found, showing promise in the aspects of improving the efficiency and selectivity of antitumor drugs; thereby, one of the perspective directions for overcoming MDR is suggested.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Natalia V Dobryakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
4
|
Zlotnikov ID, Ezhov AA, Vigovskiy MA, Grigorieva OA, Dyachkova UD, Belogurova NG, Kudryashova EV. Application Prospects of FTIR Spectroscopy and CLSM to Monitor the Drugs Interaction with Bacteria Cells Localized in Macrophages for Diagnosis and Treatment Control of Respiratory Diseases. Diagnostics (Basel) 2023; 13:diagnostics13040698. [PMID: 36832185 PMCID: PMC9954918 DOI: 10.3390/diagnostics13040698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Visualization of the interaction of drugs with biological cells creates new approaches to improving the bioavailability, selectivity, and effectiveness of drugs. The use of CLSM and FTIR spectroscopy to study the interactions of antibacterial drugs with latent bacterial cells localized in macrophages create prospects to solve the problems of multidrug resistance (MDR) and severe cases. Here, the mechanism of rifampicin penetration into E. coli bacterial cells was studied by tracking the changes in the characteristic peaks of cell wall components and intracellular proteins. However, the effectiveness of the drug is determined not only by penetration, but also by efflux of the drugs molecules from the bacterial cells. Here, the efflux effect was studied and visualized using FTIR spectroscopy, as well as CLSM imaging. We have shown that because of efflux inhibition, eugenol acting as an adjuvant for rifampicin showed a significant (more than three times) increase in the antibiotic penetration and the maintenance of its intracellular concentration in E. coli (up to 72 h in a concentration of more than 2 μg/mL). In addition, optical methods have been applied to study the systems containing bacteria localized inside of macrophages (model of the latent form), where the availability of bacteria for antibiotics is reduced. Polyethylenimine grafted with cyclodextrin carrying trimannoside vector molecules was developed as a drug delivery system for macrophages. Such ligands were absorbed by CD206+ macrophages by 60-70% versus 10-15% for ligands with a non-specific galactose label. Owing to presence of ligands with trimannoside vectors, the increase in antibiotic concentration inside macrophages, and thus, its accumulation into dormant bacteria, is observed. In the future, the developed FTIR+CLSM techniques would be applicable for the diagnosis of bacterial infections and the adjustment of therapy strategies.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Uliana D. Dyachkova
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Natalia G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Zlotnikov ID, Vigovskiy MA, Davydova MP, Danilov MR, Dyachkova UD, Grigorieva OA, Kudryashova EV. Mannosylated Systems for Targeted Delivery of Antibacterial Drugs to Activated Macrophages. Int J Mol Sci 2022; 23:16144. [PMID: 36555785 PMCID: PMC9787453 DOI: 10.3390/ijms232416144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages are a promising target for drug delivery to influence macrophage-associated processes in the body, namely due to the presence of resistant microorganisms in macrophages. In this work, a series of mannosylated carriers based on mannan, polyethylenimine (PEI) and cyclodextrin (CD) was synthesized. The molecular architecture was studied using FTIR and 1H NMR spectroscopy. The particle size, from small 10-50 nm to large 500 nm, depending on the type of carrier, is potentially applicable for the creation of various medicinal forms: intravenous, oral and inhalation. Non-specific capture by cells with a simultaneous increase in selectivity to CD206+ macrophages was achieved. ConA was used as a model mannose receptor, binding galactosylated (CD206 non-specific) carriers with constants of the order of 104 M-1 and mannosylated conjugates of 106-107 M-1. The results of such primary "ConA-screening" of ligands are in a good agreement in terms of the comparative effectiveness of the interaction of ligands with the CD206+ macrophages: non-specific (up to 10%) absorption of highly charged and small particles; weakly specific uptake of galactosylated polymers (up to 50%); and high affine capture (more than 70-80%) of the ligands with grafted trimannoside was demonstrated using the cytometry method. Double and multi-complexes of antibacterials (moxifloxacin with its adjuvants from the class of terpenoids) were proposed as enhanced forms against resistant pathogens. In vivo pharmacokinetic experiments have shown that polymeric carriers significantly improve the efficiency of the antibiotic: the half-life of moxifloxacin is increased by 2-3 times in conjugate-loaded forms, bio-distribution to the lungs in the first hours after administration of the drug is noticeably greater, and, after 4 h of observation, free moxifloxacin was practically removed from the lungs of rats. Although, in polymer systems, its content is significant-1.2 µg/g. Moreover, the importance of the covalent crosslinking carrier with mannose label was demonstrated. Thus, this paper describes experimental, scientifically based methods of targeted drug delivery to macrophages to create enhanced medicinal forms.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Maria P. Davydova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Milan R. Danilov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Uliana D. Dyachkova
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
6
|
Zlotnikov ID, Ezhov AA, Petrov RA, Vigovskiy MA, Grigorieva OA, Belogurova NG, Kudryashova EV. Mannosylated Polymeric Ligands for Targeted Delivery of Antibacterials and Their Adjuvants to Macrophages for the Enhancement of the Drug Efficiency. Pharmaceuticals (Basel) 2022; 15:1172. [PMID: 36297284 PMCID: PMC9607288 DOI: 10.3390/ph15101172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections and especially resistant strains of pathogens localized in macrophages and granulomas are intractable diseases that pose a threat to millions of people. In this paper, the theoretical and experimental foundations for solving this problem are proposed due to two key aspects. The first is the use of a three-component polymer system for delivering fluoroquinolones to macrophages due to high-affinity interaction with mannose receptors (CD206). Cytometry assay determined that 95.5% macrophage-like cells were FITC-positive after adding high-affine to CD206 trimannoside conjugate HPCD-PEI1.8-triMan, and 61.7% were FITC-positive after adding medium-affine ligand with linear mannose label HPCD-PEI1.8-Man. The second aspect is the use of adjuvants, which are synergists for antibiotics. Using FTIR and NMR spectroscopy, it was shown that molecular containers, namely mannosylated polyethyleneimines (PEIs) and cyclodextrins (CDs), load moxifloxacin (MF) with dissociation constants of the order of 10-4-10-6 M; moreover, due to prolonged release and adsorption on the cell membrane, they enhance the effect of MF. Using CLSM, it was shown that eugenol (EG) increases the penetration of doxorubicin (Dox) into cells by an order of magnitude due to the creation of defects in the bacterial wall and the inhibition of efflux proteins. Fluorescence spectroscopy showed that 0.5% EG penetrates into bacteria and inhibits efflux proteins, which makes it possible to increase the maximum concentration of the antibiotic by 60% and maintain it for several hours until the pathogens are completely neutralized. Regulation of efflux is a possible way to overcome multiple drug resistance of both pathogens and cancer cells.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Rostislav A. Petrov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Zlotnikov ID, Belogurova NG, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Plant Alkylbenzenes and Terpenoids in the Form of Cyclodextrin Inclusion Complexes as Antibacterial Agents and Levofloxacin Synergists. Pharmaceuticals (Basel) 2022; 15:861. [PMID: 35890159 PMCID: PMC9321718 DOI: 10.3390/ph15070861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Allylpolyalkoxybenzenes (APABs) and terpenoids from plant essential oils exhibit a range of remarkable biological effects, including analgesic, antibacterial, anti-inflammatory, antioxidant, and others. Synergistic activity with antibiotics of different classes has been reported, with inhibition of P-glycoprotein and impairment of bacterial cell membrane claimed as probable mechanisms. Clearly, a more detailed understanding of APABs' biological activity could help in the development of improved therapeutic options for a range of diseases. However, APABs' poor solubility in water solutions has been a limiting factor for such research. Here, we found that complex formation with β-cyclodextrins (CD) is an efficient way to transform the APABs into a water-soluble form. Using a combination of spectroscopic (FTIR, NMR, UV) methods, we have estimated the binding constants, loading capacity, and the functional groups of both APABs and monoterpenes involved in complex formation with CD: ethylene, aromatic, methoxy and hydroxy groups. In the presence of a molar excess of CD (up to 5 fold) it was possible to achieve the complete dissolution of APABs and terpenoids in an aqueous medium (at 90-98% encapsulation) higher by 10-1000 times. Further, we have demonstrated that CD-APABs, if used in combination with levofloxacin (Lev), can be antagonistic, indifferent, additive, or synergistic, mostly depending on the concentration ratio: at high Lev concentration with the addition of APAB is typically neutral or even antagonistic; while at a Lev concentration below MIC, the addition of CD-APAB is either additive or synergistic (according to FICI criteria). An over three-fold increase in Lev antibacterial activity was observed in combination with eugenol (EG), as per the growth inhibition diameter measurement in agar. Interestingly, a synergistic effect could be observed with both Gram-positive and Gram-negative bacteria. So, obviously, the APAB-CD and terpenoid-CD mechanism of action is not limited to their interaction with the bacterial membrane, which has been shown earlier for CDs. Further research may open new prospects for the development of adjuvants to improve the therapeutic regimens with existing, as well as with new anti-infective drugs.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/11B, 119991 Moscow, Russia; (I.D.Z.); (N.G.B.)
| | - Natalya G. Belogurova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/11B, 119991 Moscow, Russia; (I.D.Z.); (N.G.B.)
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia; (S.S.K.); (V.V.S.)
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia; (S.S.K.); (V.V.S.)
| | - Elena V. Kudryashova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/11B, 119991 Moscow, Russia; (I.D.Z.); (N.G.B.)
| |
Collapse
|