1
|
Haag C, Alexis A, Aoki V, Bissonnette R, Blauvelt A, Chovatiya R, Cork MJ, Danby SG, Eichenfield LF, Eyerich K, Gooderham M, Guttman-Yassky E, Hijnen DJ, Irvine AD, Katoh N, Murrell DF, Leshem YA, Levin AA, Vittrup I, Olydam JI, Orfali RL, Paller AS, Renert-Yuval Y, Rosmarin D, Silverberg JI, Thyssen JP, Ständer S, Stefanovic N, Todd G, Yu J, Simpson EL. A practical guide to using oral Janus kinase inhibitors for atopic dermatitis from the International Eczema Council. Br J Dermatol 2024; 192:135-143. [PMID: 39250758 DOI: 10.1093/bjd/ljae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Janus kinase inhibitors (JAKi) have the potential to alter the landscape of atopic dermatitis (AD) management dramatically, owing to promising efficacy results from phase III trials and their rapid onset of action. However, JAKi are not without risk, and their use is not appropriate for all patients with AD, making this a medication class that dermatologists should understand and consider when treating patients with moderate-to-severe AD. OBJECTIVES To provide a consensus expert opinion statement from the International Eczema Council (IEC) that provides a pragmatic approach to prescribing JAKi, including choosing appropriate patients and dosing, clinical and laboratory monitoring and advice about long-term use. METHODS An international cohort of authors from the IEC with expertise in JAKi selected topics of interest were placed into authorship groups covering 10 subsections. The groups performed topic-specific literature reviews, consulted up-to-date adverse event (AE) data, referred to product labels and provided analysis and expert opinion. The manuscript guidance and recommendations were reviewed by all authors, as well as the IEC Research Committee. RESULTS We recommend that JAKi be considered for patients with moderate-to-severe AD seeking the benefits of a rapid reduction in disease burden and itch, oral administration and the potential for flexible dosing. Baseline risk factors should be assessed prior to prescribing JAKi, including increasing age, venous thromboembolisms, malignancy, cardiovascular health, kidney/liver function, pregnancy and lactation, and immunocompetence. Patients being considered for JAKi treatment should be current on vaccinations and we provide a generalized framework for laboratory monitoring, although clinicians should consult individual product labels for recommendations as there are variations among the different JAKi. Patients who achieve disease control should be maintained on the lowest possible dose, as many of the observed AEs occurred in a dose-dependent manner. Future studies are needed in patients with AD to assess the durability and safety of continuous long-term JAKi use, combination medication regimens and the effects of flexible, episodic treatment over time. CONCLUSIONS The decision to initiate JAKi treatment should be shared between the patient and provider, accounting for AD severity and personal risk-benefit assessment, including consideration of baseline health risk factors, monitoring requirements and treatment costs.
Collapse
Affiliation(s)
- Carter Haag
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Ozygała A, Rokosz-Mierzwa J, Widz P, Skowera P, Wiliński M, Styka B, Lejman M. Biological Markers of Myeloproliferative Neoplasms in Children, Adolescents and Young Adults. Cancers (Basel) 2024; 16:4114. [PMID: 39682300 DOI: 10.3390/cancers16234114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic cancers characterized by hyperproliferation of the myeloid lineages. These clonal marrow disorders are extremely rare in pediatric patients. MPN is reported to occur 100 times more frequently in adults, and thus research is primarily focused on this patient group. At present, modern diagnostic techniques, primarily genetic, facilitate the identification of the biology of these diseases. The key genes are JAK2, MPL, and CALR, namely, driver mutations, which are present in approximately 90% of patients with suspected MPN. Moreover, there are more than 20 other mutations that affect the development of these hematological malignancies, as evidenced by a review of the literature. The pathogenic mechanism of MPNs is characterized by the dysregulation of the JAK/STAT signaling pathway (JAK2, MPL, CALR), DNA methylation (TET2, DNMT3A, IDH1/2), chromatin structure (ASXL1, EZH2), and splicing (SF3B1, U2AF2, SRSF2). Although rare, myeloproliferative neoplasms can involve young patients and pose unique challenges for clinicians in diagnosis and therapy. The paper aims to review the biological markers of MPNs in pediatric populations-a particular group of patients that has been poorly studied due to the low frequency of MPN diagnosis.
Collapse
Affiliation(s)
- Aleksandra Ozygała
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Rokosz-Mierzwa
- Department of Genetic Diagnostics, University Children's Hospital, 20-093 Lublin, Poland
| | - Paulina Widz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paulina Skowera
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mateusz Wiliński
- Department of Genetic Diagnostics, University Children's Hospital, 20-093 Lublin, Poland
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Ma Q, Liu Y, Zhao H, Guo Y, Sun W, Hu R. Variation characteristics and clinical significance of TP53 in patients with myeloid neoplasms. Hematology 2024; 29:2387878. [PMID: 39140716 DOI: 10.1080/16078454.2024.2387878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives: MDS and AML characterized by TP53 variations have a poor prognosis in general. However, specifically, differences in prognosis have also been observed in patients with different TP53 variants and VAFs.Methods: Here, we retrospectively analyzed datasets of patients with MDS, MPN, and AML who underwent targeted DNA sequencing from February 2018 to December 2023, and patients with reportable TP53 variations were screened. Demographic data and clinical data were collected, and the relationship between TP53 alterations and patient prognosis (AML/MDS) was analyzed using the cBioPortal and Kaplan-Meier Plotter databases. The relationship between the VAFs of TP53 variations and prognoses was analyzed using data from the present study.Results: Sixty-two variants of TP53 were identified in 58 patients. We mainly identified single mutations (79.31%, 46/58), followed by double (17.24%, 10/58) and triple (3.45%, 2/58) mutations. The variations were mainly enriched in exon4-exon8 of TP53. Missense (72.58%, 45/62) mutations were the main type of variations, followed by splice-site (9.68%, 6/62), nonsense (9.68%, 6/62), frameshift (6.45%, 4/62), and indel (1.61%, 1/62) mutations. In this study, p.Arg175His and p.Arg273His were high-frequency TP53 mutations, and DNMT3A and TET2 were commonly co-mutated genes in the three types of myeloid neoplasms; However, we reported some new TP53 variants in MPN that have not been found in the public database. Moreover, MDS or AML characterized by altered TP53 had a shorter OS than patients in the unaltered group (P<0.01), low TP53 mRNA levels were associated with shorter OS in patients with AML (P<0.01). Data from our center further found higher VAF (≥10%) associated with shorter OS in patients with MDS (median 2.75 vs. 24 months) (P<0.01).Conclusion: TP53 mutations are mainly enriched in exon4-exon8, are missense and single mutations in myeloid neoplasms, and are associated with poor prognosis of MDS/AML, and higher VAF (≥10%) of TP53 mutations associated with a shorter OS in patients with MDS.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan Liu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong Zhao
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yixian Guo
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ronghua Hu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Sun T, Xu L, Yao H, Zhao J, Chen Z, Chen Z, Wang B, Ding W. A set of pretreatment reagents including improved formula fixation and decalcification facilitating immunohistochemistry and DNA analyses of formalin-fixed paraffin-embedded bone marrow trephine biopsy. Acta Histochem 2024; 126:152188. [PMID: 39243590 DOI: 10.1016/j.acthis.2024.152188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Bone marrow biopsy depends on tissue morphology, immunohistochemical staining, and moleculardetection. Tissue pretreatment is required for bone marrow samples, from clinical specimen acquisition to pathological reporting, but during the process, proteins and nucleic acids are often altered because of the acid in fixation and decalcification solutions. In our study, we present an easy and effective pretreatment protocol and compared this novel pretreatment protocol (Set 2) with an existing traditional pretreatment process (Set 1) using tissue morphology, IHC staining, and molecular pathological analyses. Granulocytic IHC markers showed more intensive staining in samples of Set 2 than in those of Set 1. The Set 2 protocol provided a higher DNA yield and less fragmentation; moreover, samples processed with the Set 2 protocol could be subsequently used in FISH and DNA sequencing assays. Our optimized novel pretreatment protocol could better protect proteins and DNA molecules while maintaining good cell morphology compared to traditional pretreatment The novel pretreatment reagents could role as a reference by more laboratories for pretreating bone marrow biopsy samples and scientific research.
Collapse
Affiliation(s)
- Ting Sun
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongtian Yao
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Chen
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zexin Chen
- Department of Science and Development, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ding
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Puli'uvea C, Immanuel T, Green TN, Tsai P, Shepherd PR, Kalev-Zylinska ML. Insights into the role of JAK2-I724T variant in myeloproliferative neoplasms from a unique cohort of New Zealand patients. Hematology 2024; 29:2297597. [PMID: 38197452 DOI: 10.1080/16078454.2023.2297597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVES This study aimed to compile bioinformatic and experimental information for JAK2 missense variants previously reported in myeloproliferative neoplasms (MPN) and determine if germline JAK2-I724T, recently found to be common in New Zealand Polynesians, associates with MPN. METHODS For all JAK2 variants found in the literature, gnomAD_exome allele frequencies were extracted and REVEL scores were calculated using the dbNSFP database. We investigated the prevalence of JAK2-I724T in a cohort of 111 New Zealand MPN patients using a TaqMan assay, examined its allelic co-occurrence with JAK2-V617F using Oxford Nanopore sequencing, and modelled the impact of I724T on JAK2 using I-Mutant and ChimeraX software. RESULTS Several non-V617F JAK2 variants previously reported in MPN had REVEL scores greater than 0.5, suggesting pathogenicity. JAK2-I724T (REVEL score 0.753) was more common in New Zealand Polynesian MPN patients (n = 2/27; 7.4%) than in other New Zealand patients (n = 0/84; 0%) but less common than expected for healthy Polynesians (n = 56/377; 14.9%). Patients carrying I724T (n = 2), one with polycythaemia vera and one with essential thrombocythaemia, had high-risk MPN. Both patients with JAK2-I724T were also positive for JAK2-V617F, found on the same allele as I724T, as well as separately. In silico modelling did not identify noticeable structural changes that would give JAK2-I724T a gain-of-function. CONCLUSION Several non-canonical JAK2 variants with high REVEL scores have been reported in MPN, highlighting the need to further understand their relationship with disease. The JAK2-I724T variant does not drive MPN, but additional investigations are required to exclude any potential modulatory effect on the MPN phenotype.
Collapse
Affiliation(s)
- Christopher Puli'uvea
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Tracey Immanuel
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
6
|
Song J, Huang C, Jia L, Wang M, Wu C, Ji X, Song H, Meng R, Zhou D. Cerebral venous sinus thrombosis associated with JAK2 V617F mutation-related pre-primary myelofibrosis: a case report and literature review. BMC Neurol 2024; 24:386. [PMID: 39395952 PMCID: PMC11470542 DOI: 10.1186/s12883-024-03913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Cerebral venous sinus thrombosis (CVST) is a rare but potentially life-threatening subtype of stroke. Prompt and appropriate anticoagulation is crucial for improving the prognosis of CVST and preventing its recurrence. Identifying the underlying cause of CVST is decisive for guiding anticoagulant selection and determining treatment duration. CASE PRESENTATION A 50-year-old man presented with a 35-day history of headache, nausea, vomiting, and blurred vision. Digital subtraction angiography performed at another facility revealed CVST. A contrast-enhanced black-blood MRI at our center confirmed the diagnosis, which was supported by a high intracranial pressure of 330mmH2O. Laboratory tests showed elevated leukocytes and platelet counts, raising suspicion of an underlying myeloproliferative neoplasms (MPNs). A bone marrow biopsy demonstrated increased megakaryocytes and granulocytes, and genetic testing identified the presence of the Janus kinase 2 V617F (JAK2 V617F) mutation, leading to a diagnosis of pre-primary myelofibrosis (pre-PMF). During hospitalization, anticoagulation with nadroparin calcium and fibrinolytic therapy were initiated. Upon discharge, rivaroxaban and aspirin were prescribed to prevent CVST recurrence and arterial thrombosis. CONCLUSION This case highlights the importance of recognizing dynamic changes in routine blood tests that may link CVST to underlying hematological disorders. The JAK2 mutation is not only associated with MPNs but also increases the risk of thrombosis, including CVST. Further investigation is warranted to better understand the mechanisms by which JAK2 mutations contribute to thrombosis and to explore the potential benefits of JAK2 inhibitors in reducing this risk.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chanzi Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology, The People's Hospital of He Chi, Hechi, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2024; 28:3445-3456. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Chen R, Liu H, Meng W, Sun J. Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation. Sci Rep 2024; 14:21043. [PMID: 39251712 PMCID: PMC11385794 DOI: 10.1038/s41598-024-70937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Lishui People's Hospital, Lishui, 323000, China
| | - Hengfang Liu
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Weikang Meng
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Jingyu Sun
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
9
|
Miao Y, Virtanen A, Zmajkovic J, Hilpert M, Skoda RC, Silvennoinen O, Haikarainen T. Functional and Structural Characterization of Clinical-Stage Janus Kinase 2 Inhibitors Identifies Determinants for Drug Selectivity. J Med Chem 2024; 67:10012-10024. [PMID: 38843875 PMCID: PMC11215726 DOI: 10.1021/acs.jmedchem.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Janus kinase 2 (JAK2) plays a critical role in orchestrating hematopoiesis, and its deregulation leads to various blood disorders, most importantly myeloproliferative neoplasms (MPNs). Ruxolitinib, fedratinib, momelotinib, and pacritinib are FDA-/EMA-approved JAK inhibitors effective in relieving symptoms in MPN patients but show variable clinical profiles due to poor JAK selectivity. The development of next-generation JAK2 inhibitors is hampered by the lack of comparative functional analysis and knowledge of the molecular basis of their selectivity. Here, we provide mechanistic profiling of the four approved and six clinical-stage JAK2 inhibitors and connect selectivity data with high-resolution structural and thermodynamic analyses. All of the JAK inhibitors potently inhibited JAK2 activity. Inhibitors differed in their JAK isoform selectivity and potency for erythropoietin signaling, but their general cytokine inhibition signatures in blood cells were comparable. Structural data indicate that high potency and moderate JAK2 selectivity can be obtained by targeting the front pocket of the adenosine 5'-triphosphate-binding site.
Collapse
Affiliation(s)
- Ya Miao
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
| | - Anniina Virtanen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Jakub Zmajkovic
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Morgane Hilpert
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Radek C. Skoda
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Olli Silvennoinen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Teemu Haikarainen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Fimlab
Laboratories, 33520 Tampere, Finland
| |
Collapse
|
10
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Noor A Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
11
|
Kuttikrishnan S, Prabhu KS, Khan AQ, Uddin S. Signaling networks guiding erythropoiesis. Curr Opin Hematol 2024; 31:89-95. [PMID: 38335037 DOI: 10.1097/moh.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.
Collapse
Affiliation(s)
| | | | | | - Shahab Uddin
- Translational Research Institute
- Dermatology Institute, Academic Health System, Hamad Medical Corporation
- Laboratory of Animal Center, Qatar University, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Langabeer SE. The JAK2 V617F mutation and childhood type1 diabetic nephropathy? Biomed Chromatogr 2024; 38:e5786. [PMID: 37994171 DOI: 10.1002/bmc.5786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
|
13
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
14
|
Torres DG, Barbosa Alves EV, Araújo de Sousa M, Laranjeira WH, Paes J, Alves E, Canté D, Costa AG, Malheiro A, Abreu R, Nascimento L, Fraiji NA, Silva GA, Mourão LPDS, Tarragô AM. Molecular landscape of the JAK2 gene in chronic myeloproliferative neoplasm patients from the state of Amazonas, Brazil. Biomed Rep 2023; 19:98. [PMID: 37954635 PMCID: PMC10633817 DOI: 10.3892/br.2023.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
JAK2V617F (dbSNP: rs77375493) is the most frequent and most-studied variant in BCR::ABL1 negative myeloproliferative neoplasms and in the JAK2 gene. The present study aimed to molecularly characterize variants in the complete coding region of the JAK2 gene in patients with BCR::ABL1 negative chronic myeloproliferative neoplasms. The study included 97 patients with BCR::ABL1 negative myeloproliferative neoplasms, including polycythemia vera (n=38), essential thrombocythemia (n=55), and myelofibrosis (n=04). Molecular evaluation was performed using conventional PCR and Sanger sequencing to detect variants in the complete coding region of the JAK2 gene. The presence of missense variants in the JAK2 gene including rs907414891, rs2230723, rs77375493 (JAK2V617F), and rs41316003 were identified. The coexistence of variants was detected in polycythemia vera and essential thrombocythemia. Thus, individuals with high JAK2V617F variant allele frequency (≥50% VAF) presented more thrombo-hemorrhagic events and manifestations of splenomegaly compared with those with low JAK2V617F variant allele frequency (<50% VAF). In conclusion, individuals with BCR::ABL1 negative neoplasms can display >1 variant in the JAK2 gene, especially rs2230722, rs2230724, and rs77375493 variants, and those with high JAK2V617F VAF show alterations in the clinical-laboratory profile compared with those with low JAK2V617F VAF.
Collapse
Affiliation(s)
- Dania G. Torres
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Molecular Biology Center, University of Central America, Managua 14003, Nicaragua
| | - Emanuela V. Barbosa Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Miliane Araújo de Sousa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Wanessa H. Laranjeira
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Jhemerson Paes
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Erycka Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Deborah Canté
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Allyson G. Costa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Manaus School of Nursing, Federal University of Amazonas, Manaus, Amazonas State 69057-070, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Rosângela Abreu
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Leny Nascimento
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Nelson A. Fraiji
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - George A.V. Silva
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas State 69027-070, Brazil
| | - Lucivana P. de Souza Mourão
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas State 69065-001, Brazil
| | - Andréa M. Tarragô
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| |
Collapse
|
15
|
Li L, Zhou M, Wu YQ, Fan WN, Li D. Neuropsychiatric disturbance detecting polycythemia vera myelofibrosis: a case report and literature review. Front Neurol 2023; 14:1253468. [PMID: 37808487 PMCID: PMC10556491 DOI: 10.3389/fneur.2023.1253468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Neuropsychiatric disturbances and chorea are less recognized consequences of polycythemia vera (PV), and their role in post-PV myelofibrosis (MF) has not been reported. Clinical features that predict post-PV MF lack specificity. Case presentation We describe an elderly patient with PV who developed acute-onset reversible neuropsychiatric disturbances accompanied by generalized chorea and was finally diagnosed with post-PV MF after a bone marrow examination. We also reviewed four cases of late PV associated with neuropsychiatric symptoms since 1966 and analyzed their clinical characteristics and therapeutic effects. Conclusion Our case indicates that Janus kinase 2 (JAK2)-related PV is a treatable cause of late-onset chorea and that chorea may herald the deterioration of hematological parameters. Our case provides a clinically specific representation of post-PV MF. Patients with a long course of PV are recommended to undergo bone marrow re-examinations when they present with neuropsychiatric symptoms to achieve an early diagnosis of post-PV MF.
Collapse
Affiliation(s)
| | | | | | | | - Da Li
- Department of Neurology, Ningbo No 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Babarović E, Marijić B, Vranić L, Ban J, Valković T, Hadžisejdić I. A Comparison of Bone Marrow Morphology and Peripheral Blood Findings in Low and High Level JAK2 V617F Allele Burden. Diagnostics (Basel) 2023; 13:2086. [PMID: 37370982 DOI: 10.3390/diagnostics13122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cases with low level JAK2 V617F mutations are increasingly detected; however, the clinical interpretation of the low allele JAK2 burden may be challenging. The aim of this study is to analyze and compare the bone marrow morphology and peripheral blood findings in the low level JAK2 V617F allele burden (≤15% of JAK2) and high JAK2 V617F mutation burden patients (>15% JAK2). In total, 122 JAK2 V617F positive cases with concomitant bone marrow biopsies and peripheral blood findings were re-evaluated (62 low and 60 high level JAK2 V617F positive). Within the low burden group, normal looking megakaryocytes (p = 0.0005) were more frequently found, compared with those with no atypia (p = 0.0003), their number was more frequently not increased (p = 0.009), and they did not form clusters (p = 0.001). We found statistically significant difference in the number of platelet (p = 0.0003) and hematocrit levels (p = 0.032) when comparing the JAK2 V617F <3% and ≥3% mutation burden. In the high-level burden, the megakaryocytes were more frequently atypical (p = 0.054), and more frequently formed clusters (p = 0.053) with nuclei with maturation defects (p ≤ 0.0001). In conclusion, the JAK2 V617F mutation burden is reflected by morphological changes in the bone marrow and careful follow up of each and every patient with a low JAK2 V617F positivity is mandatory.
Collapse
Affiliation(s)
- Emina Babarović
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Blažen Marijić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Luka Vranić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Josipa Ban
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Toni Valković
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Hematology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Ita Hadžisejdić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Maaziz N, Garrec C, Airaud F, Bobée V, Contentin N, Cayssials E, Rimbert A, Aral B, Bézieau S, Gardie B, Girodon F. Germline JAK2 E846D Substitution as the Cause of Erythrocytosis? Genes (Basel) 2023; 14:genes14051066. [PMID: 37239426 DOI: 10.3390/genes14051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The discovery in 2005 of the JAK2 V617F gain-of-function mutation in myeloproliferative neoplasms and more particularly in polycythemia vera has deeply changed the diagnostic and therapeutic approaches to polycythemia. More recently, the use of NGS in routine practice has revealed a large number of variants, although it is not always possible to classify them as pathogenic. This is notably the case for the JAK2 E846D variant for which for which questions remain unanswered. In a large French national cohort of 650 patients with well-characterized erythrocytosis, an isolated germline heterozygous JAK2 E846D substitution was observed in only two cases. For one of the patients, a family study could be performed, without segregation of the variant with the erythrocytosis phenotype. On the other hand, based on the large UK Biobank resource cohort including more than half a million UK participants, the JAK2 E846D variant was found in 760 individuals, associated with a moderate increase in hemoglobin and hematocrit values, but with no significant difference to the mean values of the rest of the studied population. Altogether, our data as well as UK Biobank cohort analyses suggest that the occurrence of an absolute polycythemia cannot be attributed to the sole demonstration of an isolated JAK2 E846D variant. However, it must be accompanied by other stimuli or favoring factors in order to generate absolute erythrocytosis.
Collapse
Affiliation(s)
- Nada Maaziz
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
| | - Céline Garrec
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Fabrice Airaud
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Victor Bobée
- Service d'Hématologie Biologique, CHU de Rouen, 76000 Rouen, France
| | | | - Emilie Cayssials
- Service d'Oncologie Hématologique, CHU de Poitiers, 86000 Poitiers, France
| | - Antoine Rimbert
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
| | - Bernard Aral
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
| | - Betty Gardie
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
- Ecole Pratique des Hautes Etudes, Université PSL, 75006 Paris, France
- Laboratory of Excellence GR-Ex, Imagine Institute, 75015 Paris, France
| | - François Girodon
- Laboratory of Excellence GR-Ex, Imagine Institute, 75015 Paris, France
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
- Inserm U1231, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
18
|
Scarini JF, Lavareze L, Lima-Souza RAD, Emerick C, Gonçalves MT, Figueiredo-Maciel T, Vieira GDS, Kimura TDC, de Sá RS, Aquino IG, Fernandes PM, Kowalski LP, Altemani A, Mariano FV, Egal ESA. Head and neck squamous cell carcinoma: Exploring frontiers of combinatorial approaches with tyrosine kinase inhibitors and immune checkpoint therapy. Crit Rev Oncol Hematol 2022; 180:103863. [DOI: 10.1016/j.critrevonc.2022.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
19
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|