1
|
Lin X, Tian X, Jiang H, Li W, Wang C, Wu J, Chen W, Shi W, Tian Q, Gong X, Zhou Q, Xu H, Zwingenberger S. Carpaine alleviates tendinopathy in mice by promoting the ubiquitin-proteasomal degradation of p65 via targeting the E3 ubiquitin ligase LRSAM1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155323. [PMID: 38194842 DOI: 10.1016/j.phymed.2023.155323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Currently, there are no specific drugs or targets available for the treatment of tendinopathy. However, inflammation has recently been found to play a pivotal role in tendinopathy progression, thereby identifying it as a potential therapeutic target. Carpaine (CA) exhibits potential anti-inflammatory pharmacological properties and may offer a therapeutic option for tendinopathy. PURPOSE This study aimed to investigate the effectiveness of CA in addressing tendinopathy and uncovering its underlying mechanisms. METHODS Herein, the efficacy of CA by local administration in vivo in comparison to the first-line drug indomethacin was evaluated in a mouse collagenase-induced tendinopathy (CIT) model. Furthermore, IL-1β induced a simulated pathological inflammatory microenvironment in tenocytes to investigate its underlying mechanisms in vitro. Further confirmation experiments were performed by overexpressing or knocking down the selective targets of CA in vivo. RESULTS The findings demonstrated that CA was dose-dependent in treating tendinopathy and that the high-dose group outperformed the first-line drug indomethacin. Mechanistically, CA selectively bound to and enhanced the activity of the E3 ubiquitin ligase LRSAM1 in tendinopathy. This effect mediated the ubiquitination of p65 at lysine 93, subsequently promoting its proteasomal degradation. As a result, the NF-κB pathway was inactivated, leading to a reduction in inflammation of tendinopathy. Consequently, CA effectively mitigated the progression of tendinopathy. Moreover, the LRSAM1 overexpression demonstrated effectiveness in mitigating the tendinopathy progression and its knockdown abolished the therapeutic effects of CA. CONCLUSION CA attenuates the progression of tendinopathy by promoting the ubiquitin-proteasomal degradation of p65 via increasing the enzyme activity of LRSAM1. The exploration of LRSAM1 has also unveiled a new potential target for treating tendinopathy based on the ubiquitin-proteasomal pathway.
Collapse
Affiliation(s)
- Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China
| | - Xinggui Tian
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, China; University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Huaji Jiang
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, China
| | - Wenjun Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Chaomin Wang
- Department of Neurotrauma and Neurocritical Care, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Wu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China
| | - Weidong Chen
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China
| | - Weizhe Shi
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China
| | - Qinyu Tian
- Institute of Orthopedics, The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, 100853, China
| | - Xiaoqian Gong
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, China.
| | - Qinghe Zhou
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China.
| | - Hongwen Xu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510515, China.
| | - Stefan Zwingenberger
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|