1
|
Hung L, Celik A, Yin X, Yu K, Berenjy A, Kothari A, Obernolte H, Upton JEM, Lindholm Bøgh K, Somers GR, Siddiqui I, Grealish M, Quereshy FA, Sewald K, Chiu PPL, Eiwegger T. Precision cut intestinal slices, a novel model of acute food allergic reactions. Allergy 2023; 78:500-511. [PMID: 36377289 PMCID: PMC10098956 DOI: 10.1111/all.15579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Food allergy affects up to 10% of the pediatric population. Despite ongoing efforts, treatment options remain limited. Novel models of food allergy are needed to study response patterns downstream of IgE-crosslinking and evaluate drugs modifying acute events. Here, we report a novel human ex vivo model that displays acute, allergen-specific, IgE-mediated smooth muscle contractions using precision cut intestinal slices (PCIS). METHODS PCIS were generated using gut tissue samples from children who underwent clinically indicated surgery. Viability and metabolic activity were assessed from 0 to 24 h. Distribution of relevant cell subsets was confirmed using single nucleus RNA sequencing. PCIS were passively sensitized using plasma from peanut allergic donors or peanut-sensitized non-allergic donors, and exposed to various stimuli including serotonin, histamine, FcɛRI-crosslinker, and food allergens. Smooth muscle contractions and mediator release functioned as readouts. A novel program designed to measure contractions was developed to quantify responses. The ability to demonstrate the impact of antihistamines and immunomodulation from peanut oral immunotherapy (OIT) was assessed. RESULTS PCIS viability was maintained for 24 h. Cellular distribution confirmed the presence of key cell subsets including mast cells. The video analysis tool reliably quantified responses to different stimulatory conditions. Smooth muscle contractions were allergen-specific and reflected the clinical phenotype of the plasma donor. Tryptase measurement confirmed IgE-dependent mast cell-derived mediator release. Antihistamines suppressed histamine-induced contraction and plasma from successful peanut OIT suppressed peanut-specific PCIS contraction. CONCLUSION PCIS represent a novel human tissue-based model to study acute, IgE-mediated food allergy and pharmaceutical impacts on allergic responses in the gut.
Collapse
Affiliation(s)
- Lisa Hung
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alper Celik
- Centre for Computational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaojun Yin
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kai Yu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alireza Berenjy
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Akash Kothari
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Helena Obernolte
- Department of Preclinical Pharmacology and In-Vitro Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Julia E M Upton
- Division of Immunology and Allergy, SickKids Food Allergy and Anaphylaxis Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gino R Somers
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Grealish
- Surgical Pathology, University Health Network, Toronto, Ontario, Canada
| | - Fayez A Quereshy
- Surgical Oncology and Minimally Invasive Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Katherina Sewald
- Department of Preclinical Pharmacology and In-Vitro Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Priscilla P L Chiu
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.,Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
2
|
Feng D, Zhong G, Zuo Q, Wan Y, Xu W, He C, Lin C, Huang D, Chen F, Huang L. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front Pharmacol 2022; 13:1015940. [PMID: 36386127 PMCID: PMC9649518 DOI: 10.3389/fphar.2022.1015940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 04/21/2024] Open
Abstract
It is essential to explore the relationship between drugs and transporters in the process of drug development. Strong background signals in nonhuman MDCK or LLC-PK1 cells and overlapping interference of inhibitors or RNAi in human Caco-2 cells mean that an ideal alternative could be to knock out specific transporter genes in Caco-2 cells. However, the application of gene knockout (KO) to Caco-2 cells is challenging because it is still inefficient to obtain rapidly growing Caco-2 subclones with double-allele KO through long-term monoclonal cultivation. Herein, CRISPR/Cas9, a low cost but more efficient and precise gene editing technology, was utilized to singly or doubly knockout the P-gp, BCRP, and MRP2 genes in Caco-2 cells. By combining this with single cell expansion, rapidly growing transporter-deficient subclones were successfully screened and established. Bidirectional transport assays with probe substrates and three protease inhibitors indicated that more reliable and detailed data could be drawn easily with these KO Caco-2 models. The six robust KO Caco-2 subclones could contribute to efficient in vitro drug transport research.
Collapse
Affiliation(s)
- Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guorui Zhong
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|