1
|
Angeli A, Petrou A, Kartsev VG, Zubenko A, Divaeva LN, Chekrisheva V, Iacopetta D, Sinicropi MS, Sirakanyan S, Geronikaki A, Supuran CT. Phthalazine Sulfonamide Derivatives as Carbonic Anhydrase Inhibitors. Synthesis, Biological and in silico Evaluation. ChemMedChem 2024; 19:e202400147. [PMID: 38713763 DOI: 10.1002/cmdc.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several biological processes. They show a wide diversity in tissue distribution and their subcellular localization. Twenty-two novel phthalazine derivatives were designed, synthesized, and evaluated against four human isoforms: hCA I, hCA II, hCA IX, and hCA XII. Compounds appeared to be very active mostly against hCA IX (7) and hCA I (6) isoforms being more potent than reference drug acetazolamide (AAZ). Some compounds appeared to be very selective with a selectivity index up to 13.8. Furthermore, docking was performed for some of these compounds on all isoforms to understand the possible interactions with the active site. Additionally, the most active compounds against hCA IX were subjected to cell viability assay. The anticancer activity of the compounds (3 a-d, 5 d, 5 i, and 5 m) was investigated using two human breast cancer cell lines, i. e. MCF-7 and MDA-MB-231 cells, and the normal counterpart, namely MCF10-A cells.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Alexandr Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Lyudmila N Divaeva
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406, Novocherkassk, Russia
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, Italy
| | - Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Armenia, 0014, Yerevan
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
3
|
Al-Matarneh CM, Pinteala M, Nicolescu A, Silion M, Mocci F, Puf R, Angeli A, Ferraroni M, Supuran CT, Zara S, Carradori S, Paoletti N, Bonardi A, Gratteri P. Synthetic Approaches to Novel Human Carbonic Anhydrase Isoform Inhibitors Based on Pyrrol-2-one Moiety. J Med Chem 2024; 67:3018-3038. [PMID: 38301036 PMCID: PMC10895679 DOI: 10.1021/acs.jmedchem.3c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (KI 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (KI 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment.
Collapse
Affiliation(s)
- Cristina M. Al-Matarneh
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
- Research
Institute of the University of Bucharest-ICUB, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Mariana Pinteala
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Alina Nicolescu
- NMR
Laboratory ”Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Mihaela Silion
- Physics
of Polymers and Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, 09124 Cagliari, Italy
| | - Razvan Puf
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Andrea Angeli
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marta Ferraroni
- Dipartimento
di Chimica “Ugo Schiff”, University
of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Claudiu T. Supuran
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Susi Zara
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Simone Carradori
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Niccolò Paoletti
- Department
of Chemical and Geological Sciences, University
of Cagliari, 09124 Cagliari, Italy
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- NEUROFARBA
Department, Pharmaceutical and Nutraceutical Section, Laboratory of
Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Paola Gratteri
- NEUROFARBA
Department, Pharmaceutical and Nutraceutical Section, Laboratory of
Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
4
|
Bekheit MS, Sabry E, Mohamed HA, Ewies EF, Kariuki BM, Fouad MA, Vullo D, Supuran CT. Novel sulfonamide-phosphonate conjugates as carbonic anhydrase isozymes inhibitors. Drug Dev Res 2024; 85:e22135. [PMID: 37997034 DOI: 10.1002/ddr.22135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
The three-components one-pot Kabachnik-Fields reaction of sulfapyridine, diethyl phosphite, and aldehyde under thermal catalysis reaction condition in the presence of bismuth (III) triflate as a catalyst afford the corresponding sulfonamide-phosphonates (3a-3p) in good to excellent yields (78%-91%). The structures of the new synthesized compounds were elucidated and confirmed by variable spectroscopic studies. Single crystal X-ray studies for 3a, 3d, and 3i verified the proposed structure. The newly developed sulfonamide-phosphonates were evaluated for their inhibitory properties against four isoforms of human carbonic anhydrase (hCA I, II, IX, and XII). The results demonstrated that they exhibited greater potency in inhibiting hCA XII compared to hCA I, II, and IX, with Ki ranging from 5.1 to 51.1 nM. Compounds 3l and 3p displayed the highest potency, exhibiting selectivity ratios of I/XII >298.7 and 8.5, and II/XII ratios of 678.1 and 142.1, respectively. Molecular docking studies were conducted to explore their binding patterns within the binding pocket of CA XII. The results revealed that the sulfonamide NH group coordinated with the Zn2+ ion, and hydrogen bond interactions were observed with residue Thr200. Additionally, hydrophobic interactions were identified between the benzenesulfonamide phenyl ring and Leu198. Compounds 3p and 3l exhibited an additional hydrogen bonding interaction with other amino acid residues. These supplementary interactions may contribute to the enhanced potency and selectivity of these compounds toward the CA XII isoform.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Giza, Egypt
| | - Eman Sabry
- Department of Pesticide Chemistry, National Research Centre, Giza, Egypt
| | - Hanan A Mohamed
- Applied Organic Chemistry Department, National Research Centre, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | | | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, New Giza University, Cairo, Egypt
| | - Daniela Vullo
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Chemistry, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Naji EM, Naser NH, Hussein SA. In silico study, synthesis, and antineoplastic evaluation of thiazole-based sulfonamide derivatives and their silver complexes with expected carbonic anhydrase inhibitory activity. J Med Life 2023; 16:1857-1863. [PMID: 38585528 PMCID: PMC10994617 DOI: 10.25122/jml-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/26/2023] [Indexed: 04/09/2024] Open
Abstract
This study aimed to design, synthesize, and evaluate the cytotoxic activity of novel thiazole-sulfanilamide derivatives, specifically compounds M3, M4, and M5, through molecular docking and biological assays. The synthesis utilized essential chemical compounds, including sulfanilamide, chloro-acetyl chloride, thiourea, derivatives of benzaldehyde, and silver nitrate. The docking study was carried out using Molecular Operating Environment (MOE) software, and cytotoxic activity was predicted by MTT assay. The synthesized compounds demonstrated a reduction in the viability of cancer cells. Compound M5 had an IC50 of 18.53 µg/ml against MCF-7 cells, comparable to the IC50 of cisplatin. Additionally, compounds M3 and M4 had higher S scores than acetazolamide, indicating greater binding affinity to the active pocket of the receptor. Incorporating the thiazole ring in the synthesized compound augmented their flexibility and affinity for binding to the receptor. The inclusion of the metal complex additionally heightened the compounds' capacity to impede cellular growth.
Collapse
Affiliation(s)
- Esraa Mahdi Naji
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kufa University, Najaf, Iraq
| | - Noor Hatef Naser
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Sahar Aqeel Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kufa University, Najaf, Iraq
| |
Collapse
|
6
|
Rashdan HRM, El-Sayyad GS, Shehadi IA, Abdelmonsef AH. Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules. Molecules 2023; 28:7491. [PMID: 38005213 PMCID: PMC10672871 DOI: 10.3390/molecules28227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4-9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine-pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9's antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza 12566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Ihsan A Shehadi
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
7
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
8
|
Angeli A, Petrou A, Kartsev V, Lichitsky B, Komogortsev A, Capasso C, Geronikaki A, Supuran CT. Synthesis, Biological and In Silico Studies of Griseofulvin and Usnic Acid Sulfonamide Derivatives as Fungal, Bacterial and Human Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24032802. [PMID: 36769114 PMCID: PMC9917406 DOI: 10.3390/ijms24032802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of griseofulvin and usnic acid sulfonamides were synthesized and tested as possible CA inhibitors. Since β- and γ- classes are expressed in microorganisms in addition to the α- class, showing substantial structural differences to the human isoforms they are also interesting as new antiinfective targets with a different mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Griseofulvin and usnic acid sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX as well as β- and γ-CAs from different bacterial and fungal strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the three γ-CAs and Malassezia globosa (MgCA) enzyme. Six compounds (1b-1d, 1h, 1i and 1j) were more potent than AAZ against hCA I while five (1d, 1h, 1i, 1j and 4a) showed better activity than AAZ against the hCA II isoform. Moreover, all compounds appeared to be very potent against MgCA with a Ki lower than that of the reference drug. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of human CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (A.G.); (C.T.S.)
| | - Claudiu T. Supuran
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Correspondence: (A.G.); (C.T.S.)
| |
Collapse
|
9
|
Zareei S, Mohammadi-Khanaposhtani M, Adib M, Mahdavi M, Taslimi P. Sulfonamide-phosphonate hybrids as new carbonic anhydrase inhibitors: In vitro enzymatic inhibition, molecular modeling, and ADMET prediction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Elgogary SR, El‑Telbani EM, Khidre RE. Synthesis, Molecular Docking, and Antitumor Evaluation of Some New Pyrazole, Pyridine, and Thiazole Derivatives Incorporating Sulfonamide Residue. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sameh R. Elgogary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Emad M. El‑Telbani
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Rizk E. Khidre
- Chemical Industries Division, National Research Centre, Dokki, Egypt
| |
Collapse
|
11
|
Synthesis and Tyrosinase Inhibitory Activity of (E)-5-Benzyl-7- (3-Bromobenzylidene)-3-(3-Bromophenyl)-2-Phenyl-3,3a, 4,5,6,7-Hexahydro-2H-Pyrazolo[4,3-c]Pyridine. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.5.185-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tyrosinase enzyme plays an essential role in the pigmentation of human skin, fruits, and vegetables. It has been tied with several human skin diseases and post-harvest problems. Hence, the tyrosinase enzyme becomes an excellent therapeutic target to overcome these issues. This study aimed to screen tyrosinase inhibitors by synthesizing halogen-substituted pyrazolopyridine derivatives. The pyrazolopyridine compound was obtained through two stages of synthesis. First, the intermediate compound, a derivative of 3,5-bis(arylidene)-4-piperidone, was synthesized through the Cleisen-Schmidt condensation reaction of 4-piperidone and benzaldehyde derivatives. Furthermore, the intermediate compound was reacted with phenylhydrazine through a cyclocondensation reaction to produce the titled compound with an 11% yield. The chemical structure of the target compound was identified through the interpretation of UV, FTIR, NMR, and HRMS spectra. Then an in vitro assay was conducted on the tyrosinase enzyme of the fungus Agaricus bisporus by detecting the presence of dopachrome at a wavelength of 492 nm. As a result, the in vitro assay showed that the titled compound had a weak inhibitory activity, and the IC50 value was > 500 µM. Thus, the synthesized compound is considered inactive.
Collapse
|