1
|
Fischer TE, Marcondes A, Zardo DM, Nogueira A, Calhelha RC, Vaz JA, Barros L, Zielinski AAF, Alberti A. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants (Basel) 2022; 11:antiox11122431. [PMID: 36552640 PMCID: PMC9774675 DOI: 10.3390/antiox11122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sterile bracts can represent 80% of Araucaria angustifolia pinecone and are a rich source of phenolic compounds. This study aimed to optimize the extraction of the phenolic compounds from Araucaria angustifolia bracts using response surface methodology; the bioactivity properties were also investigated. The effects of the ethanol concentration, solute/solvent ratio, and temperature in relation to the phenolic composition and antioxidant activity were evaluated. The quantification and identification of the individual phenolic compounds (using high-performance liquid chromatography) and their bioactivity were evaluated. The optimized extraction conditions, which detected gallic acid, catechin, epicatechin, quercetin, and kaempferol, were obtained using 60% ethanol at a ratio of 1:38 (w/v) and a temperature of 80 °C. The extract showed high levels of phenolic classes and antioxidant activity. The extract also showed an inhibitory activity for pathogenic (approximately 80%, 10,000 µg/mL) and lactic acid (27.9%, 15,000 µg/mL) bacteria strains. The α-glucosidase inhibitory activity was approximately ten times greater than acarbose, demonstrating its high antiglycemic potential. No antioxidant and anti-inflammatory cellular activity were determined; however, a high cytotoxicity for non-tumor cells and the antiproliferative activity against the tumor cells were observed. Overall, the phenolic extract showed promising action in relation to the fight against the diseases related to oxidative stress and, hopefully, the application of the safe concentrations of the extract, based on bioavailability assays, can be verified.
Collapse
Affiliation(s)
- Thaís Estéfane Fischer
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Amanda Marcondes
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Danianni Marinho Zardo
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Alessandro Nogueira
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil
| | - Aline Alberti
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
- Correspondence: ; Tel.: +55-42-32203775
| |
Collapse
|
2
|
Thiruchenthooran V, Świtalska M, Bonilla L, Espina M, García ML, Wietrzyk J, Sánchez-López E, Gliszczyńska A. Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers. Int J Mol Sci 2022; 23:ijms231911310. [PMID: 36232614 PMCID: PMC9570096 DOI: 10.3390/ijms231911310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 μM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marta Świtalska
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Joanna Wietrzyk
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); (A.G.)
| |
Collapse
|