1
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Guibin D, Xiaolan S, Wei Z, Xiaoli L, Liu D. Prediction of iodine-125 seed implantation efficacy in lung cancer using an enhanced CT-based nomogram model. PLoS One 2024; 19:e0313570. [PMID: 39546539 PMCID: PMC11567524 DOI: 10.1371/journal.pone.0313570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Lung cancer, a leading cause of death, sees variable outcomes with iodine-125 seed implantation. Predictive tools are lacking, complicating clinical decisions. This study integrates radiomics and clinical features to develop a predictive model, advancing personalized treatment. OBJECTIVE To construct a nomogram model combining enhanced CT image features and general clinical characteristics to evaluate the efficacy of radioactive iodine-125 seed implantation in lung cancer treatment. METHODS Patients who underwent lung iodine-125 seed implantation at the Nuclear Medicine Department of Xiling Campus, Yichang Central People's Hospital from January 1, 2018, to January 31, 2024, were randomly divided into a training set (73 cases) and a test set (31 cases). Radiomic features were extracted from the enhanced CT images, and optimal clinical factors were analyzed to construct clinical, radiomics, and combined models. The best model was selected and validated for its role in assessing the efficacy of iodine-125 seed implantation in lung cancer patients. RESULTS Three clinical features and five significant radiomic features were successfully selected, and a combined nomogram model was constructed to evaluate the efficacy of iodine-125 seed implantation in lung cancer patients. The AUC values of the model in the training and test sets were 0.95 (95% CI: 0.91-0.99) and 0.83 (95% CI: 0.69-0.98), respectively. The calibration curve demonstrated good agreement between predicted and observed values, and the decision curve indicated that the combined model outperformed the clinical or radiomics model across the majority of threshold ranges. CONCLUSION A combined nomogram model was successfully developed to assess the efficacy of iodine-125 seed implantation in lung cancer patients, demonstrating good clinical predictive performance and high clinical value.
Collapse
Affiliation(s)
- Deng Guibin
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| | - Shen Xiaolan
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| | - Zhang Wei
- Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Lan Xiaoli
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dehui Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| |
Collapse
|
3
|
Cruz-Ramos M, Cabrera-Nieto SA, Murguia-Perez M, Fajardo-Espinoza FS. The Role of Adenosine in Overcoming Resistance in Sarcomas. Int J Mol Sci 2024; 25:12209. [PMID: 39596278 PMCID: PMC11594806 DOI: 10.3390/ijms252212209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Resistance to systemic therapies in sarcomas poses a significant challenge to improving clinical outcomes. Recent research has concentrated on the tumor microenvironment's role in sarcoma progression and treatment resistance. This microenvironment comprises a variety of cell types and signaling molecules that influence tumor behavior, including proliferation, metastasis, and resistance to therapy. Adenosine, abundant in the tumor microenvironment, has been implicated in promoting immunosuppression and chemoresistance. Targeting adenosine receptors and associated pathways offers a novel approach to enhancing immune responses against tumors, potentially improving immunotherapy outcomes in cancers, including sarcomas. Manipulating adenosine signaling also shows promise in overcoming chemotherapy resistance in these tumors. Clinical trials investigating adenosine receptor antagonists in sarcomas have fueled interest in this pathway for sarcoma treatment. Ultimately, a comprehensive understanding of the tumor and vascular microenvironments, as well as the adenosine pathway, may open new avenues for improving treatment outcomes and overcoming resistance in sarcoma. Further studies and clinical trials are crucial to validate these findings and optimize therapeutic strategies, particularly for osteosarcoma. This study provides a literature review exploring the potential role of the adenosine pathway in sarcomas.
Collapse
Affiliation(s)
- Marlid Cruz-Ramos
- Investigadora por México del Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Sara Aileen Cabrera-Nieto
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan 52786, Mexico; (S.A.C.-N.); (F.S.F.-E.)
| | - Mario Murguia-Perez
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León 37180, Mexico;
- Departamento de Patología Quirúrgica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León 37328, Mexico
| | | |
Collapse
|
4
|
Chauhan M, Sonali, Shekhar S, Yadav B, Garg V, Dutt R, Mehata AK, Goswami P, Koch B, Muthu MS, Singh RP. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. BIOMATERIALS ADVANCES 2024; 160:213833. [PMID: 38564997 DOI: 10.1016/j.bioadv.2024.213833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Conventional chemotherapy and poor targeted delivery in brain cancer resulting to poor treatment and develop resistance to anticancer drugs. Meanwhile, it is quite challenging to diagnose/detection of brain tumor at early stage of cancer which resulting in severity of the disease. Despite extensive research, effective treatment with real-time imaging still remains completely unavailable, yet. In this study, two brain cancer cell specific moieties i.e., AS1411 aptamer and RGD are decorated on the surface of chitosan-PLGA nanoparticles to improve targeted co-delivery of docetaxel (DTX) and upconversion nanoparticles (UCNP) for effective brain tumor therapy and real-time imaging. The nanoparticles were developed by a slightly modified emulsion/solvent evaporation method. This investigation also translates the successful synthesis of TPGS-chitosan, TPGS-RGD and TPGS-AS1411 aptamer conjugates for making PLGA nanoparticle as a potential tool of the targeted co-delivery of DTX and UCNP to the brain cancer cells. The developed nanoparticles have shown an average particle size <200 nm, spherical in shape, high encapsulation of DTX and UCNP in the core of nanoparticles, and sustained release of DTX up to 72 h in phosphate buffer saline (pH 7.4). AS1411 aptamer and RGD functionalized theranostic chitosan-PLGA nanoparticles containing DTX and UCNP (DUCPN-RGD-AS1411) have achieved greater cellular uptake, 89-fold improved cytotoxicity, enhanced cancer cell arrest even at lower drug conc., improved bioavailability with higher mean residence time of DTX in systemic circulation and brain tissues. Moreover, DUCPN-RGD-AS1411 have greatly facilitated cellular internalization and higher accumulation of UCNP in brain tissues. Additionally, DUCPN-RGD-AS1411 demonstrated a significant suppression in tumor growth in brain-tumor bearing xenograft BALB/c nude mice with no impressive sign of toxicities. DUCPN-RGD-AS1411 has great potential to be utilized as an effective and safe theranostic tool for brain cancer and other life-threatening cancer therapies.
Collapse
Affiliation(s)
- Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi 110095, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala Cantt, Haryana 133001, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pooja Goswami
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India.
| |
Collapse
|
5
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Hamza JR, Mahmood H, Shoukat H, Maqbool I, Ashraf MA. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine (Lond) 2024; 19:755-777. [PMID: 38334078 DOI: 10.2217/nnm-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Jam Riyan Hamza
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA
| | - Hassan Mahmood
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | | |
Collapse
|
6
|
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (Lond) 2024; 19:431-453. [PMID: 38288611 DOI: 10.2217/nnm-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sahil Vij
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| | - Shubham Sharma
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| |
Collapse
|
7
|
Cai X, Lv Y, Pan J, Cao Z, Zhang J, Li Y, Zheng H. CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway. Curr Protein Pept Sci 2024; 25:386-393. [PMID: 38265409 DOI: 10.2174/0113892037273375231204080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression. METHODS Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot. RESULTS Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8. CONCLUSION Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.
Collapse
Affiliation(s)
- Xiaoping Cai
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuankai Lv
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Jiongwei Pan
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Zhuo Cao
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Junzhi Zhang
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuling Li
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Hao Zheng
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| |
Collapse
|
8
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
9
|
Xu B, Dan W, Wu J, Wang X, Qin X, Han Y, Song X, Zhang X, Li J. Integrating network pharmacology with molecular docking for elucidation of molecular biological mechanisms of Jiedu Qingjin formula for non-small cell lung cancer. J Biomol Struct Dyn 2023; 42:11322-11341. [PMID: 37771185 DOI: 10.1080/07391102.2023.2262587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Traditional Chinese medicine is an important part of complementary alternative medicine. Jiedu Qingjin formula (JDQJF) is an effective national invention patent for the treatment of non-small cell lung cancer (NSCLC). We investigated the molecular biological mechanisms based on network pharmacology, molecular docking, and molecular dynamics simulations. Compounds of JDQJF were screened through the TCMSP, ETCM, and literature. Targets were searched by DrugBank and predicted by SwissTargetPrediction. GEO database was applied for screening differentially expressed genes between cancerous tissues and healthy tissues of NSCLC. Subsequently, the protein-protein interaction between JDQJF and NSCLC were obtained by Cytoscape. Visual analyses were carried out to extract candidate genes, then subjected to Metascape for enrichment analyses. Finally, molecular docking was performed by AutoDock, and the best complexes were subjected to molecular dynamics simulation and binding energy calculations by MMPBSA. A total of 273 compounds, 390 targets, 3146 GO terms, and 174 KEGG pathways were obtained. Five potential compounds (quercetin, adenosine, apigenin, heptadecanoic acid, and luteolin) were notably modulated by key targets AKT1, MAPK3, and RAF1. Enrichment results included cell cycle process, growth transduction factor, immune response-activating transduction, and involved PI3K/AKT, MAPK, NF-κB and VEGF pathway. RAF1-quercetin showed the highest binding affinity (-9.1 kcal/mol), revealed stable interactions during the simulation, and the highest estimated relative binding energy of the RAF1-Heptadecanoic was -184.277 kcal/mol. This study suggested that EMT-related, inflammation-related, immune-related, and angiogenesis-related pathways may be associated with JDQJF, and involved in the advancement of NSCLC, which points out the research direction for subsequent utility mechanism validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bowen Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenchao Dan
- Department of Dermatological, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Qin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Targeting EGFR and Monitoring Tumorigenesis of Human Lung Cancer Cells In Vitro and In Vivo Using Nanodiamond-Conjugated Specific EGFR Antibody. Pharmaceutics 2022; 15:pharmaceutics15010111. [PMID: 36678740 PMCID: PMC9865332 DOI: 10.3390/pharmaceutics15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Nanoprobes provide advantages for real-time monitoring of tumor markers and tumorigenesis during cancer progression and development. Epidermal growth factor receptor (EGFR) is a key protein that plays crucial roles for tumorigenesis and cancer therapy of lung cancers. Here, we show a carbon-based nanoprobe, nanodiamond (ND), which can be applied for targeting EGFR and monitoring tumorigenesis of human lung cancer cells in vitro and in vivo. The optimal fluorescent intensities of ND particles were observed in the human lung cancer cells and nude mice under in vivo imaging system. The fluorescence signal of ND particles can be real-time detected in the xenografted human lung tumor formation of nude mice. Moreover, the ND-conjugated specific EGFR antibody cetuximab (Cet) can track the location and distribution of EGFR proteins of lung cancer cells in vitro and in vivo. ND-Cet treatment increased cellular uptake ability of nanocomposites in the EGFR-expressed cells but not in the EGFR-negative lung cancer cells. Interestingly, single ND-Cet complex can be directly observed on the protein G bead by immunoprecipitation and confocal microscopy. Besides, the EGFR proteins were transported to lysosomes for degradation. Together, this study demonstrates that ND-conjugated Cet can apply for targeting EGFR and monitoring tumorigenesis during lung cancer progression and therapy.
Collapse
|
11
|
Wu Y, Wang M, Li Y, Xia H, Cheng Y, Liu C, Xia Y, Wang Y, Yue Y, Cheng X, Xie Z. The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics 2022; 14:pharmaceutics14101993. [PMID: 36297429 PMCID: PMC9607308 DOI: 10.3390/pharmaceutics14101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/19/2022] Open
Abstract
Docetaxel (DTX)-based formulation development is still confronted with significant challenges, due to its refractory solubility and side effects on normal tissues. Inspired by the application of the transdermal drug delivery model to topical treatment, we developed a biocompatible and slow-release DTX-containing emulsion via self-assembly prepared by a high-speed electric stirring method and optimized the formulation. The results of accelerated the emulsion stability experiment showed that the emulsion prepared at 10,000 rpm/min had a stability of 89.15 ± 2.05%. The ADME, skin irritation, skin toxicity and molecular interaction between DTX and excipients were predicted via Discovery Studio 2016 software. In addition, DTX addition in oil or water phases of the emulsion showed different release rates in vitro and ex vivo. The DTX release ex vivo of the DTX/O-containing emulsion and the DTX/W-containing emulsion were 45.07 ± 5.41% and 96.48 ± 4.54%, respectively. In vitro antioxidant assays and anti-lipid peroxidation models revealed the antioxidant potential of DTX. However, DTX-containing emulsions could maintain and even enhance the antioxidant effect, both scavenging free radicals in vitro and inhibiting the process of lipid peroxidation.
Collapse
Affiliation(s)
- Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230601, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|
12
|
Chaudhari D, Katari O, Ghadi R, Kuche K, Date T, Bhargavi N, Jain S. Unfolding the Potency of Adenosine in Targeting Triple Negative Breast Cancer via Paclitaxel-Incorporated pH-Responsive Stealth Liposomes. ACS Biomater Sci Eng 2022; 8:3473-3484. [PMID: 35896042 DOI: 10.1021/acsbiomaterials.2c00594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.
Collapse
Affiliation(s)
- Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|