1
|
Dibwe DF, Oba S, Monde S, Hui SP. Inhibition of Accumulation of Neutral Lipids and Their Hydroperoxide Species in Hepatocytes by Bioactive Allium sativum Extract. Antioxidants (Basel) 2024; 13:1310. [PMID: 39594452 PMCID: PMC11591070 DOI: 10.3390/antiox13111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Our ongoing research suggests that extracts from plant-based foods inhibit the accumulation of lipid droplets (LDs) and oxidized lipid droplets (oxLDs) in liver cells. These findings suggest their potential use in the alleviation of metabolic dysfunction-associated fatty liver disease (MAFLD) and its most severe manifestation, metabolic dysfunction-associated steatohepatitis (MASH). Allium extracts (ALs: AL1-AL9) were used to assess their ability to reduce lipid droplet accumulation (LDA) and oxidized lipid droplet accumulation (oxLDA) by inhibiting neutral lipid accumulation and oxidation in LD. Among the tested Allium extracts, AL1, AL3, and AL6 demonstrated substantial inhibitory effects on the LDA. Furthermore, AL1 extract showed real-time inhibition of LDA in HepG2 cells in DMEM supplemented with oleic acid (OA) within 12 h of treatment. Our lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] species in hepatocytes under OA and linoleic acid loading conditions. These results suggest that Allium-based foods inhibit LD accumulation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolomic analysis of AL1-the bioactive LDAI extract-using both LC-MS/MS and 1D-NMR [1H, 13C, and Dept (135 and 90)] approaches revealed that AL1 contains mainly carbohydrates and glucoside metabolites, including iridoid glucosides, as well as minor amino acids, organosulfur compounds, and organic acids such as the antioxidant ascorbic acid (KA2 = S13), and their derivatives, suggesting that AL1 could be a potential resource for the development of functional foods and in drug discovery targeting MAFLD/MASH and other related diseases.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (S.M.)
| | - Satomi Monde
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (S.M.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| |
Collapse
|
2
|
Dibwe DF, Kitayama E, Oba S, Takeishi N, Chiba H, Hui SP. Inhibition of Lipid Accumulation and Oxidation in Hepatocytes by Bioactive Bean Extracts. Antioxidants (Basel) 2024; 13:513. [PMID: 38790618 PMCID: PMC11118026 DOI: 10.3390/antiox13050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024] Open
Abstract
During our search for natural resources that can inhibit lipid droplet accumulation (LDA) and potentially prevent metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive stages, such as metabolic dysfunction-associated steatohepatitis (MASH), eight bean extracts (BE1-BE8) were tested for their ability to inhibit lipid accumulation and oxidation in hepatocytes. Substantial inhibitory effects on LDA with bean extracts (BEs) BE2, BE4, BE5, and BE8 were demonstrated. An advanced lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and its oxidized species, TAG hydroperoxide (TGOOH), in hepatocytes under fatty acid-loading conditions. The results show that the antioxidants BE2 and BE8 are potential candidates for regulating TAG and TGOOH accumulation in fatty acid-induced lipid droplets (LDs). This study suggests that bean-based foods inhibit LDs formation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolic profiling of BEs revealed that BE2 and BE8 contained polyphenolic compounds. These may be potential resources for the development of functional foods and drug discovery targeting MAFLD/MASH.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| | - Emi Kitayama
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Nire Takeishi
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| |
Collapse
|
3
|
Herraiz T, Salgado A. Formation, Identification, and Occurrence of the Furan-Containing β-Carboline Flazin Derived from l-Tryptophan and Carbohydrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6575-6584. [PMID: 38470992 PMCID: PMC10979450 DOI: 10.1021/acs.jafc.3c07773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
β-Carbolines (βCs) are bioactive indole alkaloids found in foods and in vivo. This work describes the identification, formation, and occurrence in foods of the βC with a furan moiety flazin (1-[5-(hydroxymethyl)furan-2-yl]-9H-pyrido[3,4-b]indole-3-carboxylic acid). Flazin was formed by the reaction of l-tryptophan with 3-deoxyglucosone but not with 5-hydroxymethylfurfural. Its formation was favored in acidic conditions and heating (70-110 °C). The proposed mechanism of formation occurs through the formation of intermediates 3,4-dihydro-β-carboline-3-carboxylic acid (imines), followed by the oxidation to C═O in the carbohydrate chain and aromatization to βC ring with subsequent dehydration steps and cyclization to afford the furan moiety. Flazin is generated in the reactions of tryptophan with carbohydrates. Its formation from fructose was higher than from glucose, whereas sucrose gave flazin under acidic conditions and heating owing to hydrolysis. Flazin was identified in foods by HPLC-MS, and its content was determined by HPLC-fluorescence. It occurred in numerous processed foods, such as tomato products, including crushed tomato puree, fried tomato, ketchup, tomato juices, and jams, but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onions, and honey. Their concentrations ranged from not detected to 22.3 μg/mL, with the highest mean levels found in tomato concentrate (13.9 μg/g) and soy sauce (9.4 μg/mL). Flazin was formed during the heating process, as shown in fresh tomato juice and crushed tomatoes. These results indicate that flazin is widely present in foods and is daily uptaken in the diet.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Novais 6, Ciudad Universitaria, Madrid 28040, Spain
| | - Antonio Salgado
- Centro
de Espectroscopía de RMN (CERMN), Universidad de Alcalá (UAH), Campus Universitario Ctra. Madrid-Barcelona km
33.6, Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
4
|
Dibwe DF, Takeishi N, Oba S, Sakurai A, Sakurai T, Tsukui T, Chiba H, Hui SP. Identification of a β-Carboline Alkaloid from Chemoselectively Derived Vanilla Bean Extract and Its Prevention of Lipid Droplet Accumulation in Human Hepatocytes (HepG2). Molecules 2023; 28:8024. [PMID: 38138514 PMCID: PMC10745329 DOI: 10.3390/molecules28248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Targeting bioactive compounds to prevent lipid droplet accumulation in the liver, we explored an antioxidative extract from vanilla bean (Vainilla planifolia) after chemo-selective derivatization through heating and acid modification. The chemical analysis of vanilla bean extract through chemoselective derivatization resulted in the identification of sixteen compounds (34-50) using LC-MS/MS analysis. A β-carboline alkaloid with a piperidine C-ring and a vanillin moiety at C-1 (34) was identified by molecular networking and diagnostic fragmentation filtering approaches. β-carboline alkaloid 34 exhibited significant inhibitory activity of lipid droplet accumulation (LDAI) in oleic acid-loaded hepatocellular carcinoma HepG2 cells. The LDAI activity was associated with both activation of lipolysis and suppression of lipogenesis in the cells. The study indicates that crude plant extracts, following chemoselective derivatization, may contain bioactive compounds that could be beneficial in preventing hepatosteatosis and could serve as a source of lead compounds for drug development. This approach may be useful to investigate other mixtures of natural products and food resources.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
| | - Nire Takeishi
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (N.T.); (S.O.); (A.S.)
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (N.T.); (S.O.); (A.S.)
| | - Akiko Sakurai
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (N.T.); (S.O.); (A.S.)
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
| |
Collapse
|