1
|
Shi M, Zheng X, Zhou Y, Yin Y, Lu Z, Zou Z, Hu Y, Liang Y, Chen T, Yang Y, Jing M, Lei D, Yang P, Li X. Selectivity Mechanism of Pyrrolopyridone Analogues Targeting Bromodomain 2 of Bromodomain-Containing Protein 4 from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:33658-33674. [PMID: 37744850 PMCID: PMC10515184 DOI: 10.1021/acsomega.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Bromodomain and extra-terminal domain (BET) proteins play an important role in epigenetic regulation and are linked to several diseases; therefore, they are interesting targets. BET has two bromodomains: bromodomain 1 (BD1) and BD2. Selective targeting of BD1 or BD2 may produce different activities and greater effects than pan-BD inhibitors. However, the selective mechanism of the specific core must be studied at the atomic level. This study determined the effectiveness of pyrrolopyridone analogues to selectively inhibit BD2 using a pan-BD inhibitor (ABBV-075) and a selective-BD2 inhibitor (ABBV-744). Molecular dynamics simulations and calculations of binding free energies were used to systematically study the selectivity of BD2 inhibition by the pyrrolopyridone analogues. Overall, the pyrrolopyridone analogue inhibitors targeting BD2 interacted mainly with the following amino acid pairs between bromodomain-containing protein 4 (BRD4)-BD1 and BRD4-BD2 complexes: I146/V439, N140/N433, D144/H437, P82/P375, V87/V380, D88/D381, and Y139/Y432. The pyrrolopyridone analogues targeting BRD4-BD2 were divided into five regions based on selectivity mechanism. These results suggest that the R3 and R5 regions of pyrrolopyridone analogues can be modified to improve the selectivity between BRD4-BD1 and BRD4-BD2. The selectivity of BD2 inhibition by pyrrolopyridone analogues can be used to design novel BD2 inhibitors based on a pyrrolopyridone core.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
- Innovation
Center of Nursing Research, Nursing Key Laboratory of Sichuan Province,
West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueting Zheng
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Zhou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuan Yin
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhou Lu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhiyan Zou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Hu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuanyuan Liang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Tingting Chen
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuhan Yang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Meng Jing
- Department
of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Dan Lei
- School
of Life Science and Engineering, Southwest
University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Pei Yang
- Department
of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Xiaoan Li
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| |
Collapse
|
2
|
Skitchenko R, Dinikina Y, Smirnov S, Krapivin M, Smirnova A, Morgacheva D, Artomov M. Case report: Somatic mutations in microtubule dynamics-associated genes in patients with WNT-medulloblastoma tumors. Front Oncol 2023; 12:1085947. [PMID: 36713498 PMCID: PMC9877404 DOI: 10.3389/fonc.2022.1085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor which accounts for about 20% of all pediatric brain tumors and 63% of intracranial embryonal tumors. MB is considered to arise from precursor cell populations present during an early brain development. Most cases (~70%) of MB occur at the age of 1-4 and 5-9, but are also infrequently found in adults. Total annual frequency of pediatric tumors is about 5 cases per 1 million children. WNT-subtype of MB is characterized by a high probability of remission, with a long-term survival rate of about 90%. However, in some rare cases there may be increased metastatic activity, which dramatically reduces the likelihood of a favorable outcome. Here we report two cases of MB with a histological pattern consistent with desmoplastic/nodular (DP) and classic MB, and genetically classified as WNT-MB. Both cases showed putative causal somatic protein truncating mutations identified in microtubule-associated genes: ARID2, TUBB4A, and ANK3.
Collapse
Affiliation(s)
- Rostislav Skitchenko
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
| | - Yulia Dinikina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Sergey Smirnov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mikhail Krapivin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Anna Smirnova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Daria Morgacheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mykyta Artomov
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia,The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, Ohio State University, Columbus, OH, United States,*Correspondence: Mykyta Artomov,
| |
Collapse
|
3
|
Skouras P, Markouli M, Strepkos D, Piperi C. Advances on Epigenetic Drugs for Pediatric Brain Tumors. Curr Neuropharmacol 2023; 21:1519-1535. [PMID: 36154607 PMCID: PMC10472812 DOI: 10.2174/1570159x20666220922150456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients' prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|