1
|
Azlisham NA, Rahman FS, Mahmood Z, Mohamad D, Johari Y, Al-Batayneh OB. Comparative analysis of hydrazinyl coumarin derivative incorporation in resin-modified and conventional glass ionomer cement. J Taibah Univ Med Sci 2024; 19:1119-1129. [PMID: 39758353 PMCID: PMC11699269 DOI: 10.1016/j.jtumed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
Objective The study aimed to conduct a comparative analysis of the effects of incorporating hydrazinyl coumarin derivative (HCD) in resin-modified (RMGIC) and conventional glass ionomer cement (cGIC) on their release profiles and antibacterial properties. Method Resin-modified GIC, Fuji II LC (F2) and high-fluoride cGIC, Fuji VII (F7) were used as controls. HCD was synthesized in-house, incorporated into both RMGIC and cGICs at 1 % and 2 % weight percentages (w/w), and chemically analyzed using Fourier transform infrared (FTIR) spectroscopy. Then, the F2 containing HCD (GIC-HCD F2) and F7 containing HCD (GIC-HCD F7) were evaluated for HCD and fluoride release profiles using UV Visible spectrophotometer and pH/ISE benchtop fluoridemeter, respectively. The antibacterial properties were assessed against Streptococcus sanguinis using the agar well diffusion method and measurement of bacterial growth turbidity, followed by the observation of the bacterial morphology using scanning electron microscope. The data were statistically analyzed using one-way ANOVA and Bonferroni post-hoc tests. Results The FTIR spectra confirmed the presence of HCD in the GIC-HCD matrices. HCD was successfully released from both GIC-HCD F2 and GIC-HCD F7 matrices at both weight percentages. Higher fluoride release and inhibitory zones were observed compared to the control groups, with GIC-HCD F2 having a more significant effect than GIC-HCD F7. Additionally, the incorporation of HCD slowed down the growth of Streptococcus sanguinis and showed remarkable changes in bacterial shape specifically on GIC-HCD F2. Conclusion The incorporation of HCD into both RMGIC and cGIC improved fluoride release and enhanced the antibacterial activities, with a more significant effect observed in RMGIC compared to cGIC.
Collapse
Affiliation(s)
- Nor A.F. Azlisham
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Fatimah S.A. Rahman
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Zuliani Mahmood
- Unit of Paediatric Dentistry, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Dasmawati Mohamad
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Yanti Johari
- Unit of Prosthodontics, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Ola B. Al-Batayneh
- Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Oliveira JSD, Ribas BR, Ferro AC, Tasso CO, Camargo R, Cavalheiro AJ, Jorge JH. Cryptocarya moschata fractions decrease planktonic cells and biofilms of Candida albicans and Streptococcus mutans. BIOFOULING 2024; 40:831-846. [PMID: 39444328 DOI: 10.1080/08927014.2024.2418466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Extracts of Cryptocarya species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of Cryptocarya moschata fractions against planktonic cells and biofilms of Candida albicans and Streptococcus mutans. Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic C. albicans. C. moschata fractions did not affect planktonic S. mutans. For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate C. moschata fractions exhibit antimicrobial effects against biofilms.
Collapse
Affiliation(s)
- Jonatas Silva de Oliveira
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Beatriz Ribeiro Ribas
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Amanda Costa Ferro
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Camilla Olga Tasso
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rafaelly Camargo
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| | - Alberto José Cavalheiro
- Institute of Chemistry, Department of Organic Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Janaina Habib Jorge
- School of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Araújo GR, da Costa PCQG, Nogueira PL, Alves DDN, Ferreira AR, da Silva PR, de Andrade JC, de Sousa NF, Loureiro PBA, Sobral MV, Sousa DP, Scotti MT, de Castro RD, Scotti L. In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against Candida spp. BIOTECH 2024; 13:16. [PMID: 38921048 PMCID: PMC11201913 DOI: 10.3390/biotech13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Candida species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (E)-benzylidene-chroman-4-one against Candida, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 μM (62.5 μg/mL) to 4232.44 μM (1000 μg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against Candida spp., possibly targeting the plasma membrane.
Collapse
Affiliation(s)
- Gleycyelly Rodrigues Araújo
- Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Palloma Christine Queiroga Gomes da Costa
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Paula Lima Nogueira
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Danielle da Nóbrega Alves
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Alana Rodrigues Ferreira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Pablo R. da Silva
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
| | - Jéssica Cabral de Andrade
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Natália F. de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Paulo Bruno Araujo Loureiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Damião P. Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Ricardo Dias de Castro
- Postgraduate Program in Dentistry, Department of Clinic and Social Dentistry, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (P.C.Q.G.d.C.); (P.L.N.); (D.d.N.A.); (P.R.d.S.)
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.R.F.); (J.C.d.A.); (N.F.d.S.); (P.B.A.L.); (M.V.S.); (D.P.S.); (M.T.S.); (R.D.d.C.)
- Health Sciences Center, Federal University of Paraíba, Campus I, João Pessoa 58051-900, PB, Brazil
- Institute of Drugs and Medicines Research, Federal University of Paraíba, Via Ipê Amarelo, S/N, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
4
|
Yue D, Zheng D, Bai Y, Yang L, Yong J, Li Y. Insights into the anti-Candida albicans properties of natural phytochemicals: An in vitro and in vivo investigation. Phytother Res 2024; 38:2518-2538. [PMID: 38450815 DOI: 10.1002/ptr.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Invasive candidiasis, attributed to Candida albicans, has long been a formidable threat to human health. Despite the advent of effective therapeutics in recent decades, the mortality rate in affected patient populations remains discouraging. This is exacerbated by the emergence of multidrug resistance, significantly limiting the utility of conventional antifungals. Consequently, researchers are compelled to continuously explore novel solutions. Natural phytochemicals present a potential adjunct to the existing arsenal of agents. Previous studies have substantiated the efficacy of phytochemicals against C. albicans. Emerging evidence also underscores the promising application of phytochemicals in the realm of antifungal treatment. This review systematically delineates the inhibitory activity of phytochemicals, both in monotherapy and combination therapy, against C. albicans in both in vivo and in vitro settings. Moreover, it elucidates the mechanisms underpinning the antifungal properties, encompassing (i) cell wall and plasma membrane damage, (ii) inhibition of efflux pumps, (iii) induction of mitochondrial dysfunction, and (iv) inhibition of virulence factors. Subsequently, the review introduces the substantial potential of nanotechnology and photodynamic technology in enhancing the bioavailability of phytochemicals. Lastly, it discusses current limitations and outlines future research priorities, emphasizing the need for high-quality research to comprehensively establish the clinical efficacy and safety of phytochemicals in treating fungal infections. This review aims to inspire further contemplation and recommendations for the effective integration of natural phytochemicals in the development of new medicines for patients afflicted with C. albicans.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wu T, Yu L, Xiao L, Wang T, Li P, Mu B. Novel 4-Chromanone-Derived Compounds as Plant Immunity Inducers against CMV Disease in Passiflora spp. (Passion Fruit). Molecules 2024; 29:1045. [PMID: 38474557 DOI: 10.3390/molecules29051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.
Collapse
Affiliation(s)
- Tianli Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingling Xiao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Tao Wang
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China
| | - Bo Mu
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| |
Collapse
|
6
|
Nogueira PL, da Nóbrega Alves D, Queiroga Gomes da Costa PC, Araujo GR, Ferreira AR, Gomes Moura Farias AP, Ferreira de Sousa N, Sobral MV, Pergentino de Sousa D, Scotti MT, Scotti L, Dias de Castro R. Derivative of 7-hydroxycoumarin has antifungal potential against Candida species and low cytotoxicity against human cells: In silico studies and biological evaluation. Fungal Biol 2023; 127:1451-1465. [PMID: 38097319 DOI: 10.1016/j.funbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
This study investigates the antifungal and cytotoxic properties of 7-(pentyloxy)-2H-chromen-2-one. Through molecular docking and dynamics simulations, we explored the compound's interactions with fungal cell protein targets. Notably, it exhibited strong affinities for 1,3β-glucan synthase, squalene epoxidase, δ-14-sterol reductase, 14-α-demethylase, and thymidylate synthase, with binding energies ranging from -100.39 to -73.15 kcal/mol. Molecular dynamics simulations confirmed its stable binding at active targets. The MIC and MFC values ranged from 67.16 μM (15.6 μg/mL) to 537.28 μM (125.0 μg/mL). The compound displayed promising antifungal effects, inhibiting fungal growth for at least 24 hours. Fungal plasma membrane function alteration likely contributed to these antifungal mechanisms. Additionally, the combination of the compound with nystatin, fluconazole, and caspofungin showed indifferent effects on antifungal activity. Cytotoxicity assessment in human keratinocyte cells (HaCaT) revealed an IC50 of 100 μM, which was approximately 1.5 times higher than the MIC for C. krusei. Thus, the compound exhibited strongly in silico and in vitro antifungal activity with low cytotoxicity in HaCaT cells. These findings support its potential as a candidate for further development as an antifungal compound.
Collapse
Affiliation(s)
- Paula Lima Nogueira
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil; BrazilHealth Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Danielle da Nóbrega Alves
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil; BrazilHealth Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Palloma Christine Queiroga Gomes da Costa
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil; BrazilHealth Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Gleycyelly Rodrigues Araujo
- Department of Clinical and Social Dentistry, Federal University of Paraíba, Campus I, João Pessoa, PB, Brazil.
| | - Alana Rodrigues Ferreira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Ana Paula Gomes Moura Farias
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Damião Pergentino de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| | - Ricardo Dias de Castro
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, PB, Brazil; Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; BrazilHealth Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil; Health Sciences Center, Federal University of Paraíba, Campus I, 58051-970, João Pessoa, PB, Brazil.
| |
Collapse
|
7
|
Man Chin C, Dos Santos JL. Special Issue "Drug Candidates for the Treatment of Infectious Diseases". Pharmaceuticals (Basel) 2023; 16:1257. [PMID: 37765065 PMCID: PMC10534658 DOI: 10.3390/ph16091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Infectious diseases encompass a range of conditions stemming from parasites [...].
Collapse
Affiliation(s)
- Chung Man Chin
- School of Pharmaceutical Science, State University of São Paulo (Unesp), Araraquara 14800-903, Brazil
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, São José do Rio Preto 15030-070, Brazil
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Science, State University of São Paulo (Unesp), Araraquara 14800-903, Brazil
| |
Collapse
|
8
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Castanha APM, Almeida-Terassi LM, Guardado-Yordi E, Matos MJ, Maistro EL. Cytogenotoxicity assessment of 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin on HepG2/C3A cells and leukocytes. J Appl Toxicol 2023; 43:323-334. [PMID: 36000810 DOI: 10.1002/jat.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/17/2023]
Abstract
3-(3,4-Dihydroxyphenyl)-7,8-dihydroxycoumarin is a newly synthesized coumarin derivative with a potent antioxidant effect. The aim of the present study is to investigate the safety of this compound, determining the in vitro cytotoxic and genotoxic in human peripheral blood mononuclear cells (PBMC) and in HepG2/C3A cells. Cell viability has been investigated by the trypan blue staining test and MTT assay and the genotoxicity by the comet assay and micronucleus test, using concentrations between 0.01 and 10 μg/ml. The compound proved to be noncytotoxic in both cell lines, at all tested concentrations, protecting the cells from the DNA damage. In addition, this molecule does not show clastogenic/aneugenic effects when performing the micronucleus test with cytokinesis blockade. Based on the obtained data, and the conditions of the experiments, we can conclude that the 3-(3,4-dihydroxyphenyl)-7,8-dihydroxycoumarin is a safe molecule up to a concentration of 10 μg/ml, which encourages further studies aiming to explore its potential as a drug candidate.
Collapse
Affiliation(s)
| | | | | | - Maria João Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Edson Luis Maistro
- Marilia Medical School, FAMEMA, Marilia, Brazil.,Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University-UNESP, Marília, Brazil
| |
Collapse
|
10
|
Steverding D, do Nascimento LG, Perez-Castillo Y, de Sousa DP. Gallic Acid Alkyl Esters: Trypanocidal and Leishmanicidal Activity, and Target Identification via Modeling Studies. Molecules 2022; 27:molecules27185876. [PMID: 36144611 PMCID: PMC9501172 DOI: 10.3390/molecules27185876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Eight gallic acid alkyl esters (1−8) were synthesized via Fischer esterification and evaluated for their trypanocidal and leishmanicidal activity using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. The general cytotoxicity of the esters was evaluated with human HL-60 cells. The compounds displayed moderate to good trypanocidal but zero to low leishmanicidal activity. Gallic acid esters with alkyl chains of three or four carbon atoms in linear arrangement (propyl (4), butyl (5), and isopentyl (6)) were found to be the most trypanocidal compounds with 50% growth inhibition values of ~3 μM. On the other hand, HL-60 cells were less susceptible to the compounds, thus, resulting in moderate selectivity indices (ratio of cytotoxic to trypanocidal activity) of >20 for the esters 4−6. Modeling studies combining molecular docking and molecular dynamics simulations suggest that the trypanocidal mechanism of action of gallic acid alkyl esters could be related to the inhibition of the T. brucei alternative oxidase. This suggestion is supported by the observation that trypanosomes became immobile within minutes when incubated with the esters in the presence of glycerol as the sole substrate. These results indicate that gallic acid alkyl esters are interesting compounds to be considered for further antitrypanosomal drug development.
Collapse
Affiliation(s)
- Dietmar Steverding
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
- Correspondence: (D.S.); (D.P.d.S.)
| | - Lázaro Gomes do Nascimento
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito 170516, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Área de Ciencias Aplicadas, Universidad de Las Américas, Quito 170516, Ecuador
| | - Damião Pergentino de Sousa
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Correspondence: (D.S.); (D.P.d.S.)
| |
Collapse
|