1
|
Fernández-Mimbrera MÁ, Salido S, Marchal JA, Alejo-Armijo A. Tracking Selective Internalization and Intracellular Dynamics of Modified Chitosan Polymeric Micelles of Interest in Primary Hyperoxaluria Diseases. ACS OMEGA 2024; 9:39503-39512. [PMID: 39346832 PMCID: PMC11425826 DOI: 10.1021/acsomega.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Primary hyperoxalurias (PHs) represent rare diseases associated with disruptions in glyoxylate metabolism within hepatocytes. Impaired glyoxylate detoxification in PH patients results in its accumulation and subsequent conversion into oxalate, a process catalyzed by the hepatic lactate dehydrogenase A enzyme (hLDHA). Targeting this enzyme selectively in the liver using small organic molecules emerges as a potential therapeutic strategy for PH. However, achieving selective hepatic inhibition of hLDHA poses challenges, requiring precise delivery of potential inhibitors into hepatocytes to mitigate adverse effects in other tissues. Our recent efforts focused on the design of polymeric micelle nanocarriers tailored for the selective transport and release of hLDHA inhibitors into liver tissues. In this study, we synthesized and assessed the internalization and disaggregation dynamics of chitosan-based polymeric micelles in both hepatic and nonhepatic cell models using live-cell imaging. Our findings indicate that lactonolactone residues confer internalization capacity to the micelles upon exposure to cells. Moreover, we demonstrated the intracellular disaggregation capacity of these nanocarriers facilitated by the cystamine redox-sensitive linker attached to the polymer. Importantly, no cytotoxic effects were observed throughout the experimental time frame. Finally, our results underscore the higher selectivity of these nanocarriers for hepatic HepG2 cells compared to other nonhepatic cell models.
Collapse
Affiliation(s)
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
2
|
Díaz I, Salido S, Nogueras M, Cobo J. Synthesis of Ethyl Pyrimidine-Quinolincarboxylates Selected from Virtual Screening as Enhanced Lactate Dehydrogenase (LDH) Inhibitors. Int J Mol Sci 2024; 25:9744. [PMID: 39273691 PMCID: PMC11396203 DOI: 10.3390/ijms25179744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The inhibition of the hLDHA (human lactate dehydrogenase A) enzyme has been demonstrated to be of great importance in the treatment of cancer and other diseases, such as primary hyperoxalurias. In that regard, we have designed, using virtual docking screening, a novel family of ethyl pyrimidine-quinolinecarboxylate derivatives (13-18)(a-d) as enhanced hLDHA inhibitors. These inhibitors were synthesised through a convergent pathway by coupling the key ethyl 2-aminophenylquinoline-4-carboxylate scaffolds (7-12), which were prepared by Pfitzinger synthesis followed by a further esterification, to the different 4-aryl-2-chloropyrimidines (VIII(a-d)) under microwave irradiation at 150-170 °C in a green solvent. The values obtained from the hLDHA inhibition were in line with the preliminary of the preliminary docking results, the most potent ones being those with U-shaped disposition. Thirteen of them showed IC50 values lower than 5 μM, and for four of them (16a, 18b, 18c and 18d), IC50 ≈ 1 μM. Additionally, all compounds with IC50 < 10 μM were also tested against the hLDHB isoenzyme, resulting in three of them (15c, 15d and 16d) being selective to the A isoform, with their hLDHB IC50 > 100 μM, and the other thirteen behaving as double inhibitors.
Collapse
Affiliation(s)
| | | | | | - Justo Cobo
- Facultad de Ciencias Experimentales, Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, E-23071 Jaén, Spain; (I.D.); (S.S.); (M.N.)
| |
Collapse
|
3
|
Vettorazzi M, Díaz I, Angelina E, Salido S, Gutierrez L, Alvarez SE, Cobo J, Enriz RD. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg Chem 2024; 144:107112. [PMID: 38237390 DOI: 10.1016/j.bioorg.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Iván Díaz
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Emilio Angelina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Departamento de Química, Área de Química Física, Laboratorio de Estructura Molecular y Propiedades, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Sofía Salido
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Lucas Gutierrez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Sergio E Alvarez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Justo Cobo
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina.
| |
Collapse
|
4
|
Salido S, Alejo-Armijo A, Altarejos J. Synthesis and hLDH Inhibitory Activity of Analogues to Natural Products with 2,8-Dioxabicyclo[3.3.1]nonane Scaffold. Int J Mol Sci 2023; 24:9925. [PMID: 37373073 DOI: 10.3390/ijms24129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42-70) by reaction between flavylium salts (27-35) and several nucleophiles (36-41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6-12.0 µM) and the highest selectivity rate (>25). Structure-activity relationships have been deduced. Kinetic studies using a Lineweaver-Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme.
Collapse
Affiliation(s)
- Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|