1
|
Herrera-Ochoa D, Llano I, Ripoll C, Cybulski P, Kreuzer M, Rocha S, García-Frutos EM, Bravo I, Garzón-Ruiz A. Protein aggregation monitoring in cells under oxidative stress: a novel fluorescent probe based on a 7-azaindole-BODIPY derivative. J Mater Chem B 2024; 12:7577-7590. [PMID: 38984432 DOI: 10.1039/d4tb00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of new fluorescent probes as molecular sensors is a critical step for the understanding of molecular mechanisms. BODIPY-based probes offer versatility due to their high fluorescence quantum yields, photostability, and tunable absorption/emission wavelengths. Here, we report the synthesis and evaluation of a novel 7-azaindole-BODIPY derivative to probe hydrophobic proteins as well as protein misfolding and aggregation. In organic solvents, this compound shows two efficiently interconverting emissive excited states. In aqueous environments, it forms molecular aggregates with unique photophysical properties. The complex photophysics of the 7-azaindole-BODIPY derivative was explored for sensing applications. In the presence of albumin, the compound is stabilized in hydrophobic protein regions, significantly increasing its fluorescence emission intensity and lifetime. Similar effects occur in the presence of protein aggregates but not with other macromolecules like pepsin, DNA, Ficoll 40, and coconut oil. Fluorescence lifetime imaging microscopy (FLIM) and two-photon fluorescence microscopy on breast (MCF-7) and lung (A549) cancer cells incubated with this compound display longer fluorescence lifetimes and higher emission intensity under oxidative stress. Synchrotron FTIR micro spectroscopy confirmed that the photophysical changes observed were due to protein misfolding and aggregation caused by the oxidative stress. These findings demonstrate that this compound can serve as a fluorescent probe to monitor protein misfolding and aggregation triggered by oxidative stress.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Iván Llano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
| | - Consuelo Ripoll
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Martin Kreuzer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Cerdanyola Del Vallès, Barcelona, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Bayrak N, Sever B, Ciftci H, Otsuka M, Fujita M, TuYuN AF. Scaffold Hopping and Structural Modification of NSC 663284: Discovery of Potent (Non)Halogenated Aminobenzoquinones. Biomedicines 2023; 12:50. [PMID: 38255157 PMCID: PMC10813041 DOI: 10.3390/biomedicines12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The development of new anticancer drugs is still ongoing as a solution to the unsatisfactory results obtained by chemotherapy patients. Our previous studies on natural product-based anticancer agents led us to synthesize a new series of Plastoquinone (PQ) analogs and study their anticancer effects. Four members of PQ analogs (PQ1-4) were designed based on the scaffold hopping strategy; the design was later completed with structural modification. The obtained PQ analogs were synthesized and biologically evaluated against different cancer genotypes according to NCI-60 screening in vitro. According to the NCI results, bromo and iodo-substituted PQ analogs (PQ2 and PQ3) showed remarkable anticancer activities with a wide-spectrum profile. Among the two selected analogs (PQ2 and PQ3), PQ2 showed promising anticancer activity, in particular against leukemia cell lines, at both single- and five-dose NCI screenings. This compound was also detected by MTT assay to reveal significant selectivity between Jurkat cells and PBMC (healthy) compared to imatinib. Further in silico studies indicated that PQ2 was able to occupy the ATP-binding cleft of Abl TK, one of the main targets of leukemia, through key interactions similar to dasatinib and imatinib. PQ2 is also bound to the minor groove of the double helix of DNA. Based on computational pharmacokinetic studies, PQ2 possessed a remarkable drug-like profile, making it a potential anti-leukemia drug candidate for future studies.
Collapse
Affiliation(s)
- Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, İstanbul 34126, Turkey;
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (M.O.); (M.F.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (M.O.); (M.F.)
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, İstanbul 34126, Turkey;
| |
Collapse
|
3
|
Haffez H, Elsayed NA, Ahmed MF, Fatahala SS, Khaleel EF, Badi RM, Elkaeed EB, El Hassab MA, Hammad SF, Eldehna WM, Masurier N, El-Haggar R. Novel N-Arylmethyl-aniline/chalcone hybrids as potential VEGFR inhibitors: synthesis, biological evaluations, and molecular dynamic simulations. J Enzyme Inhib Med Chem 2023; 38:2278022. [PMID: 37982203 PMCID: PMC11003488 DOI: 10.1080/14756366.2023.2278022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
Significant advancements have been made in the domain of targeted anticancer therapy for the management of malignancies in recent times. VEGFR-2 is characterised by its pivotal involvement in angiogenesis and subsequent mechanisms that promote tumour cells survival. Herein, novel N-arylmethyl-aniline/chalcone hybrids 5a-5n were designed and synthesised as potential anticancer and VEGFR-2 inhibitors. The anticancer activity was evaluated at the NCI-USA, resulting in the identification of 10 remarkably potent molecules 5a-5j that were further subjected to the five-dose assays. Thereafter, they were explored for their VEGFR-2 inhibitory activity where 5e and 5h emerged as the most potent inhibitors. 5e and 5h induced apoptosis with cell cycle arrest at the SubG0-G1 phase within HCT-116 cells. Moreover, their impact on some key apoptotic genes was assessed, suggesting caspase-dependent apoptosis. Furthermore, molecular docking and molecular dynamics simulations were conducted to explore the binding modes and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo, Egypt
| | - Nosaiba A. Elsayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sherif F. Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Egypt Alexandria
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| |
Collapse
|
4
|
Jannuzzi AT, Yilmaz Goler AM, Shilkar D, Mondal S, Basavanakatti VN, Yıldırım H, Yıldız M, Çelik Onar H, Bayrak N, Jayaprakash V, TuYuN AF. Cytotoxic activity of quinolinequinones in cancer: In vitro studies, molecular docking, and ADME/PK profiling. Chem Biol Drug Des 2023; 102:1133-1154. [PMID: 37537000 DOI: 10.1111/cbdd.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul University, Istanbul, Turkey
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Subodh Mondal
- Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., Bengaluru, Karnataka, India
| | | | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hülya Çelik Onar
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Onnis V. Special Issue "Novel Anti-Proliferative Agents". Pharmaceuticals (Basel) 2023; 16:1437. [PMID: 37895908 PMCID: PMC10610072 DOI: 10.3390/ph16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a disease that can affect any organ and spread to other nearby or distant organs [...].
Collapse
Affiliation(s)
- Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
6
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
7
|
Yilmaz Goler AM, Tarbin Jannuzzi A, Biswas A, Mondal S, Basavanakatti VN, Jayaprakash Venkatesan R, Yıldırım H, Yıldız M, Çelik Onar H, Bayrak N, Jayaprakash V, TuYuN AF. Analysis of Quinolinequinone Analogs with Promising Cytotoxic Activity against Breast Cancer. Chem Biodivers 2023; 20:e202300848. [PMID: 37590495 DOI: 10.1002/cbdv.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.
Collapse
Affiliation(s)
- Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854, İstanbul, Türkiye
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, 34116, İstanbul, Türkiye
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, Jharkhand, India
| | - Subodh Mondal
- Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., 560058, Bengaluru, India
| | | | - Raghusrinivasan Jayaprakash Venkatesan
- Department of Industrial and Systems Engineering, Faculty of Interdisciplinary Sciences & Engineering, Indian Institute of Technology, 721302, Kharagpur, India
| | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, İstanbul, Türkiye
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye
| | - Hülya Çelik Onar
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, İstanbul, Türkiye
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, 34126, İstanbul, Türkiye
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, 34126, İstanbul, Türkiye
| |
Collapse
|
8
|
Studies on 1,4-Quinone Derivatives Exhibiting Anti-Leukemic Activity along with Anti-Colorectal and Anti-Breast Cancer Effects. Molecules 2022; 28:molecules28010077. [PMID: 36615273 PMCID: PMC9822417 DOI: 10.3390/molecules28010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), breast cancer, and chronic myeloid leukemia (CML) are life-threatening malignancies worldwide. Although potent therapeutic and screening strategies have been developed so far, these cancer types are still major public health problems. Therefore, the exploration of more potent and selective new agents is urgently required for the treatment of these cancers. Quinones represent one of the most important structures in anticancer drug discovery. We have previously identified a series of quinone-based compounds (ABQ-1-17) as anti-CML agents. In the current work, ABQ-3 was taken to the National Cancer Institute (NCI) for screening to determine its in vitro antiproliferative effects against a large panel of human tumor cell lines at five doses. ABQ-3 revealed significant growth inhibition against HCT-116 CRC and MCF-7 breast cancer cells with 2.00 µM and 2.35 µM GI50 values, respectively. The MTT test also showed that ABQ-3 possessed anticancer effects towards HCT-116 and MCF-7 cells with IC50 values of 5.22 ± 2.41 μM and 7.46 ± 2.76 μM, respectively. Further experiments indicated that ABQ-3 induced apoptosis in both cell lines, and molecular docking studies explicitly suggested that ABQ-3 exhibited DNA binding in a similar fashion to previously reported compounds. Based on in silico pharmacokinetic prediction, ABQ-3 might display drug-like features enabling this compound to become a lead molecule for future studies.
Collapse
|