1
|
Aliabadi M, Valizadegan F, Seyedalipour B, Yaqubi S, Nazifi E. A promising therapeutic potential of Origanum vulgare extract in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39676694 DOI: 10.1080/09603123.2024.2440898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
This study explored the therapeutic potential hydroalcoholic extract derived from Origanum vulgare leaf in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. Eight groups, including controls, ethanol-exposed rats, and those treated with extract (100, 200, and 300 mg/kg) alone or combined with ethanol, were assessed using the radial arm maze (RAM) for behavioral tests. Ethanol increased working memory errors and time spent in error zones, effects notably reduced by the extract, especially at 300 mg/kg dose (P≤0.001). Biochemical tests showed ethanol suppressed catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities within the hippocampus and cortex. while the extract elevated CAT and SOD activities and reduced AChE activity. These results suggest the extract's neuroprotective properties, including oxidative stress reduction and neurotransmitter modulation, which mitigate ethanol-induced hippocampal damage. This highlights Origanum vulgare extract potential as a therapeutic adjunct for memory deficits and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Maryam Aliabadi
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Farhad Valizadegan
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ehsan Nazifi
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Wang DD, Zhang R, Tang LY, Wang LNQ, Ao MR, Jia JM, Wang AH. Identification of diterpenoids from Salvia castanea Diels f. tomentosa Stib and their antitumor activities. Bioorg Chem 2024; 151:107701. [PMID: 39154520 DOI: 10.1016/j.bioorg.2024.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Four new diterpenoid tropolones, salvirrddones A-D (1-4), and four new icetexanes, salvirrddices A-D (9-12), along with thirteen new 11,12-seco-norabietane diterpenoids, salvirrddnor A-M (14-24, 31, 32) and sixteen known compounds (5-8, 13, 25-30, 33-37), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Their structures were elucidated by comprehensive spectroscopic analyses, quantum chemical calculations, and X-ray crystallography. Structurally, compounds 1-8 represent a class of rare natural products featuring a unique cyclohepta-2,4,6-trienone moiety with diterpenoid skeletons. Bioassays showed that only diterpenoid tropolones 3, 5, 6, and 7 exhibited significant activity against several human cancer cell lines with IC50 values ranging from 3.01 to 11.63 μM. Additionally, 3 was shown to inhibit Hep3B cell proliferation, block the G0/G1 phase of the cell cycle, induce mitochondrial dysfunction and oxidative stress, promote apoptosis, as well as inhibit migration and invasion in vitro. Meanwhile, 3 demonstrated anti-proliferative, pro-apoptotic, and migration-inhibitory effects in the Hep3B xenograft zebrafish model in vivo. Network pharmacological analysis and molecular docking results suggested that 3 may treat hepatocellular carcinoma (HCC) through the PI3K-Akt signaling pathway, as well as by binding PARP1 and CDK2 targets. Overall, the present results extremely expand the repertoire of diterpenoids from natural products and may provide a novel chemical scaffold for the discovery of new antitumor drugs.
Collapse
Affiliation(s)
- Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lian-Yu Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Liu-Nian-Qiu Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Man-Rui Ao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Wang DD, Zhang R, Tang LY, Long GQ, Yan H, Yang YC, Guo ZF, Zheng YY, Wang Y, Jia JM, Wang AH. (±)-Salvicatone A: A Pair of C 27-Meroterpenoid Enantiomers with Skeletons from the Roots and Rhizomes of Salvia castanea Diels f. tomentosa Stib. J Org Chem 2024; 89:12894-12901. [PMID: 37976373 DOI: 10.1021/acs.joc.3c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
(±)-Salvicatone A (1), a C27-meroterpenoid featuring a unique 6/6/6/6/6-pentacyclic carbon skeleton with a 7,8,8a,9,10,10a-hexahydropyren-1 (6H)-one motif, was isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Its structure was characterized by comprehensive spectroscopic analyses along with computer-assisted structure elucidation, including ACD/structure elucidator and quantum chemical calculations with 1H/13C NMR and electronic circular dichroism. Biogenetically, compound 1 was constructed from decarboxylation following [4 + 2] Diels-Alder cycloaddition reaction between caffeic acid and miltirone analogue. Bioassays showed that (-)-1 and (+)-1 inhibited nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophage cells with an IC50 value of 6.48 ± 1.25 and 15.76 ± 5.55 μM, respectively. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking and molecular dynamics simulations study, implied that (-)-1 and (+)-1 may potentially bind to retinoic acid receptor-related orphan receptor C to exert anti-inflammatory activities.
Collapse
Affiliation(s)
- Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lian-Yu Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Qing Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hui Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yong-Cheng Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zi-Feng Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Ying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
4
|
Zhang R, Wang DD, Tang LY, Ji PX, Li XM, Guo ZF, Wang J, Jia JM, Wang AH. Salvirrane A-F, six undescribed nordrimane sesquiterpene derivatives from Salvia castanea Diels f. tomentosa Stib and their cytotoxic activities. PHYTOCHEMISTRY 2024; 218:113958. [PMID: 38154730 DOI: 10.1016/j.phytochem.2023.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Six undescribed nordrimane sesquiterpene derivatives, salvirrane A-F (1-6), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Comprehensive spectral analysis and a quantum chemical calculation strategy were employed to determine their structures. These compounds represent four previously unreported nordrimane carbon skeletal types in Salvia genus, including 15-nor-drimane, 11,15-di-nor-drimane, 14,15-di-nor-drimane, and 11,14,15-tri-nor-drimane sesquiterpenes. All compounds were evaluated for their cytotoxic activities against several human cancer cell lines (A549, H460, Hep3B, MCF7, PC3, and HeLa). The results showed that 3 exhibited low activity against MCF7 cells (IC50,72.72 ± 6.95 μM) and moderate activity against HeLa cells (IC50, 9.80 ± 0.64 μM). Moreover, the EdU (5-ethynyl-2'-deoxyuridine) assay demonstrates that 3 displays dose-dependent efficacy in suppressing the proliferation of HeLa cells. Network pharmacology and molecular docking technology implied that 3 may potentially bind to Src (proto-oncogene tyrosine-protein kinase) to exert anti-proliferative activity.
Collapse
Affiliation(s)
- Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lian-Yu Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Peng-Xue Ji
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xin-Min Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zi-Feng Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jue Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
5
|
Iacopetta D, Ceramella J, Scumaci D, Catalano A, Sinicropi MS, Tundis R, Alcaro S, Borges F. An Update on Recent Studies Focusing on the Antioxidant Properties of Salvia Species. Antioxidants (Basel) 2023; 12:2106. [PMID: 38136225 PMCID: PMC10740915 DOI: 10.3390/antiox12122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nutrition has crucial effects and a significant role in disease prevention. Recently, nutraceuticals have attracted much attention in scientific research due to their pleiotropic effects and relatively non-toxic behavior. Among the biological effects displayed by plants belonging to the Lamiaceae family, such as antibacterial, anticancer, anti-inflammatory, and anticholinesterase, sage is well known for its antioxidant properties and is a rich source of numerous compounds that are biologically active, amongst them polyphenols, with more than 160 types identified. In this review we summarized some of the significant studies published in the last decade reporting the most employed extraction methods and the different assays that are useful for establishing the antioxidant properties of some sage species. Even though the scientific literature contains plenty of data regarding the antioxidant properties of many sage species, further studies are needed in order to gain a deeper understanding of the mechanism of action and the compounds responsible for their antioxidant activity. Finally, it should be taken into account that the data on the antioxidant properties of sage extracts are often difficult to compare with each other, since a series of variables in the extraction procedures, the type of assay used, and standardization may affect the final result.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Domenica Scumaci
- Laboratory of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, “S Venuta” Campus, 88100 Catanzaro, Italy;
- Research Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, “S Venuta” Campus, 88100 Catanzaro, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Academic Spinoff, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| |
Collapse
|
6
|
Maache S, Zbadi L, Ghouizi AE, Soulo N, Saghrouchni H, Siddique F, Sitotaw B, Salamatullah AM, Nafidi HA, Bourhia M, Lyoussi B, Elarabi I. Antioxidant and antimicrobial effects of essential oils from two salvia species with in vitro and in silico analysis targeting 1AJ6 and 1R4U proteins. Sci Rep 2023; 13:14038. [PMID: 37640782 PMCID: PMC10462652 DOI: 10.1038/s41598-023-41178-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The Middle Atlas is a Moroccan territory that serves as an abode to plants with incredible biodiversity, of which aromatic and medicinal plants that have been of folkloric use are a significant component. However, their effective utilization in modern medicine requires the characterization of their phytochemicals to facilitate their entry into drug discovery pipelines. Hence, this study aimed to characterize and investigate the antioxidant activity and antimicrobial effects of the essential oils (EOs) of Salvia lavandulifolia subsp. mesatlantica and Salvia officinalis L. by use of in vitro and in silico assays. Ten phytochemicals were identified in the EOs of S. lavandulifolia, while twenty phytochemicals were identified in S. officinalis. Camphor was the most abundant compound in both species, comprising 26.70% and 39.24% of the EOs of S. lavandulifolia and S. officinalis, respectively. The EOs of both plants exhibited significant DPPH free radical scavenging activity, with S. lavandulifolia and S. officinalis showing estimated scavenging rates of 92.97% and 75.20%, respectively. In terms of Ferric Reducing Antioxidant Power (FRAP), S. officinalis demonstrated a higher value (72.08%) compared to that of S. lavandulifolia (64.61%). Evaluation of the antimicrobial effects of the EOs of S. officinalis and S. lavandulifolia against microorganisms revealed bactericidal activities against Proteus mirabilis and Bacillus subtilis at low concentrations. It showed bactericidal activities against Staphylococcus aureus and Candida albicans at a relatively higher concentration. Molecular docking of antioxidant and antimicrobial proteins offers significant insights into ligand-protein interactions, facilitating the development of innovative therapeutics from the current study. Ultimately, this study identified the phytochemical composition of S. lavandulifolia and S. officinalis and highlighted their potential for therapeutic discovery.
Collapse
Affiliation(s)
- Souad Maache
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, USMBA, Fez, Morocco
| | - Latifa Zbadi
- Public Health Laboratories at the Prefectural Delegation of Tangier Assilah, Tangier, Morocco
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, USMBA, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, USMBA, Fez, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01250, Balcalı, Adana, Turkey
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC, G1V 0A6, Canada
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco.
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, USMBA, Fez, Morocco
| | - Ilham Elarabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, USMBA, Fez, Morocco
| |
Collapse
|