1
|
Belal A, Mahmoud R, Taha M, Halfaya FM, Hassaballa A, Elbanna ES, Khaled E, Farghali A, Abo El-Ela FI, Mahgoub SM, Ghoneim MM, Zaky MY. Correction: Belal et al. Therapeutic Potential of Zeolites/Vitamin B12 Nanocomposite on Complete Freund's Adjuvant-Induced Arthritis as a Bone Disorder: In Vivo Study and Bio-Molecular Investigations. Pharmaceuticals 2023, 16, 285. Pharmaceuticals (Basel) 2024; 17:1172. [PMID: 39338417 PMCID: PMC11434925 DOI: 10.3390/ph17091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Esraa Salah Elbanna
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Khaled
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samar M Mahgoub
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Oncology and Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
2
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
3
|
Arafa EG, Mahmoud R, Gadelhak Y, Gawad OFA. Design, preparation, and performance of different adsorbents based on carboxymethyl chitosan/sodium alginate hydrogel beads for selective adsorption of Cadmium (II) and Chromium (III) metal ions. Int J Biol Macromol 2024; 273:132809. [PMID: 38825296 DOI: 10.1016/j.ijbiomac.2024.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Developing cost-effective and efficient adsorbents for heavy metals in multicomponent systems is a challenge that needs to be resolved to meet the challenges of wastewater treatment technology. Two adsorbents were synthesized, characterized, and investigated for the removal of Cd2+ and Cr3+ as model heavy metals in their single and binary solutions. The first adsorbent (ACZ) was a nanocomposite formed of O-Carboxymethyl chitosan, sodium alginate, and zeolite. While, the other (ACL) contained ZnFe layered double hydroxides instead of the zeolite phase. Adsorbents were characterized using XRD, FTIR, SEM, and swelling degree analysis. For single heavy metal adsorption isotherms, data for both adsorbents was best fitted and indicated a multilayer adsorption nature. For binary adsorption, Langmuir model with interacting parameters showed the best results compared to other models for both pollutants. For single system, Avrami model was found to be the best model representing the adsorption kinetics data, which indicates that the mechanism of adsorption follows multiple kinetic orders that may change during duration of adsorption process. Numerous interaction mechanisms can occur between the heavy metals and functional groups in the synthesized hydrogels such as NH2, COOH, and OH groups leading to efficient adsorption of metal ions.
Collapse
Affiliation(s)
- Esraa Gaber Arafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Yasser Gadelhak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Omayma Fawzy Abdel Gawad
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt; Petroleum Chemistry, Faculty of Basic Sciences, King Salman International University, South Saini, Egypt.
| |
Collapse
|
4
|
Xu M, Chen H, Tan T, Xie K, Xie H, Li Q. Exploring the causal association between rheumatoid arthritis and the risk of cervical cancer: a two-sample Mendelian randomization study. Arthritis Res Ther 2024; 26:35. [PMID: 38263277 PMCID: PMC10804645 DOI: 10.1186/s13075-023-03240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Whether rheumatoid arthritis patients have an increased risk of cervical cancer remains controversial, and further research is needed on this clinical question. This study aims to investigate the association between rheumatoid arthritis and the susceptibility to cervical cancer by employing Mendelian randomization methodology, utilizing the extensive dataset from human genome-wide association data analysis. METHODS The publicly accessible MR base database was utilized to obtain the complete genome, relevant research findings, and summarized data pertaining to rheumatoid arthritis and cervical cancer. Genetic tool variables, specifically single-nucleotide polymorphisms closely linked to rheumatoid arthritis, were chosen for analysis. Four methods, namely inverse variance weighted analysis, weighted median analysis, weighted mode, and MR-Egger regression, were employed. Statistical analysis was conducted to explore the potential association between rheumatoid arthritis and susceptibility to cervical cancer. RESULTS The results of the inverse variance weighted analysis (OR = 1.096, 95% CI: 1.018-1.180, P = 0.015) indicate a significant causal relationship between rheumatoid arthritis and an increased risk of cervical cancer. Furthermore, the absence of horizontal pleiotropic effects (MR-Egger intercept = 0.00025, P = 0.574) and heterogeneity (QEgger = 2.239, I2Egger = 0.225, PEgger = 0.268, QIVW = 2.734, I2IVW = 0.220, PIVW = 0.999) suggests that the observed association is not influenced by confounding factors. Sensitivity analysis and other statistical methods also support the conclusion that genetic pleiotropy does not introduce bias to the findings. CONCLUSION There is a causal relationship between rheumatoid arthritis and the occurrence of cervical cancer. People with rheumatoid arthritis is one of the high-risk groups for early screening of cervical cancer. The IL-18 may play a significant role in elevating the risk of cervical cancer among rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Minxian Xu
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Huan Chen
- Department of Gynecology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Tao Tan
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, People's Republic of China
| | - Kaihong Xie
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Hui Xie
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, People's Republic of China.
| | - Qing Li
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, People's Republic of China.
- School of Medical Imaging, Laboratory Science and Rehabilitation, Xiangnan University, 423000, Chenzhou, Hunan Province, People's Republic of China.
| |
Collapse
|