1
|
Javed A, Alam MB, Naznin M, Ahmad R, Lee CH, Kim S, Lee SH. RSM- and ANN-Based Multifrequency Ultrasonic Extraction of Polyphenol-Rich Sargassum horneri Extracts Exerting Antioxidative Activity via the Regulation of MAPK/Nrf2/HO-1 Machinery. Antioxidants (Basel) 2024; 13:690. [PMID: 38929129 PMCID: PMC11200430 DOI: 10.3390/antiox13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raees Ahmad
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Alshammari F, Alam MB, Naznin M, Kim S, Lee SH. Optimization, Metabolomic Analysis, Antioxidant Potential andDepigmenting Activity of Polyphenolic Compounds fromUnmature Ajwa Date Seeds ( Phoenix dactylifera L.) Using Ultrasonic-Assisted Extraction. Antioxidants (Basel) 2024; 13:238. [PMID: 38397836 PMCID: PMC10886343 DOI: 10.3390/antiox13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
This study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.
Collapse
Affiliation(s)
- Fanar Alshammari
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
- Mass Spectroscopy Converging Research and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Cui L, Ma C, Shi W, Yang C, Wu J, Wu Z, Lou Y, Fan G. A Systematic Study of Yiqi Qubai Standard Decoction for Treating Vitiligo Based on UPLC-Q-TOF/MS Combined with Chemometrics, Molecular Docking, and Cellular and Zebrafish Assays. Pharmaceuticals (Basel) 2023; 16:1716. [PMID: 38139842 PMCID: PMC10747336 DOI: 10.3390/ph16121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The Yiqi Qubai (YQ) formula is a hospital preparation for treating vitiligo in China that has had reliable efficacy for decades. The formula consists of four herbs; however, the extraction process to produce the formula is obsolete and the active ingredients and mechanisms remain unknown. Therefore, in this paper, fingerprints were combined with the chemometrics method to screen high-quality herbs for the preparation of the YQ standard decoction (YQD). Then, the YQD preparation procedure was optimized using response surface methodology. A total of 44 chemical constituents, as well as 36 absorption components (in rat plasma) of YQD, were identified via UPLC-Q-TOF/MS. Based on the ingredients, the quality control system of YQD was optimized by establishing the SPE-UPLC-Q-TOF/MS identification method and the HPLC quantification method. Network pharmacological analysis and molecular docking showed that carasinaurone, calycosin-7-O-β-d-glucoside, methylnissolin-3-O-glucoside, genkwanin, akebia saponin D, formononetin, akebia saponin B, and apigenin may be the key active components for treating vitiligo; the core targets associated with them were AKT1, MAPK1, and mTOR, whereas the related pathways were the PI3K-Akt, MAPK, and FoxO signaling pathways. Cellular assays showed that YQD could promote melanogenesis and tyrosinase activity, as well as the transcription and expression of tyrosinase-associated proteins (i.e., TRP-1) in B16F10 cells. In addition, YQD also increased extracellular tyrosinase activity. Further efficacy validation showed that YQD significantly promotes melanin production in zebrafish. These may be the mechanisms by which YQD improves the symptoms of vitiligo. This is the first systematic study of the YQ formula that has optimized the standard decoction preparation method and investigated the active ingredients, quality control, efficacy, and mechanisms of YQD. The results of this study lay the foundations for the clinical application and further development of the YQ formula.
Collapse
Affiliation(s)
- Lijun Cui
- School of Medicine, Tongji University, Shanghai 200331, China;
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Cui Ma
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Chen Yang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangping Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yuefen Lou
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Guorong Fan
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
4
|
Javed A, Alam MB, Naznin M, Shafique I, Kim S, Lee SH. Tyrosinase inhibitory activity of Sargassum fusiforme and characterisation of bioactive compounds. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37183174 DOI: 10.1002/pca.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Sargassum fusiforme (Harvey) Setchell, also known as Tot (in Korean) and Hijiki (in Japanese), is widely consumed in Korea, Japan, and China due to its health promoting properties. However, the bioactive component behind the biological activity is still unknown. OBJECTIVES We aimed to optimise the extraction conditions for achieving maximum tyrosinase inhibition activity by using two sophisticated statistical tools, that is, response surface methodology (RSM) and artificial neural network (ANN). Moreover, high-resolution mass spectrometry (HRMS) was used to tentatively identify the components, which are then further studied for molecular docking study using 2Y9X protein. METHODOLOGY RSM central composite design was used to conduct extraction using microwave equipment, which was then compared to ANN. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was used to tentatively identify bioactive components, which were then docked to the 2Y9X protein using AutoDock Vina and MolDock software. RESULTS Maximum tyrosinase inhibition activity of 79.530% was achieved under optimised conditions of time: 3.27 min, temperature: 128.885°C, ethanol concentration: 42.13%, and microwave intensity: 577.84 W. Furthermore, 48 bioactive compounds were tentatively identified in optimised Sargassum fusiforme (OSF) extract, and among them, seven phenolics, five flavonoids, five lignans, six terpenes, and five sulfolipids and phospholipids were putatively reported for the first time in Sargassum fusiforme. Among 48 bioactive components, trifuhalol-A, diphlorethohydroxycarmalol, glycyrrhizin, and arctigenin exhibited higher binding energies for 2Y9X. CONCLUSION Taken together, these findings suggest that OSF extract can be used as an effective skin-whitening source on a commercial level and could be used in topical formulations by replacing conventional drugs.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Imran Shafique
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectroscopy Converging Research Centre, Green Nano Materials Research Centre, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| |
Collapse
|