Spinieli RL, Cazuza R, Sales AJ, Carolino R, Franci JA, Tajerian M, Leite-Panissi CRA. Acute restraint stress regulates brain DNMT3a and promotes defensive behaviors in male rats.
Neurosci Lett 2024;
820:137589. [PMID:
38101612 PMCID:
PMC10947420 DOI:
10.1016/j.neulet.2023.137589]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Depending on its duration and severity, stress may contribute to neuropsychiatric diseases such as depression and anxiety. Studies have shown that stress impacts the hypothalamic-pituitary-adrenal (HPA) axis, but its downstream molecular, behavioral, and nociceptive effects remain unclear. We hypothesized that a 2-hour single exposure to acute restraint stress (ARS) activates the HPA axis and changes DNA methylation, a molecular mechanism involved in the machinery of stress regulation. We further hypothesized that ARS induces anxiety-like and risk assessment behavior and alters nociceptive responses in the rat. We employed biochemical (radioimmunoassay for corticosterone; global DNA methylation by enzyme immunoassay and western blot for DNMT3a expression in the amygdala, ventral hippocampus, and prefrontal cortex) and behavioral (elevated plus maze and dark-light box for anxiety and hot plate test for nociception) tests in adult male Wistar rats exposed to ARS or handling (control). All analyses were performed 24 h after ARS or handling. We found that ARS increased corticosterone levels in the blood, increased the expression of DNMT3a in the prefrontal cortex, promoted anxiety-like and risk assessment behaviors in the elevated plus maze, and increased the nociceptive threshold observed in the hot plate test. Our findings suggest that ARS might be a helpful rat model for studying acute stress and its effects on physiology, epigenetic machinery, and behavior.
Collapse