1
|
Huang Y, Su H, Wang Y, Zhang Y. Threshold effects between caffeine intake and urine flow rate: a population-based cross-sectional study. Int Urol Nephrol 2024; 56:3921-3932. [PMID: 39012583 DOI: 10.1007/s11255-024-04153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE The potential benefits of caffeine intake are currently receiving much attention and exploration. Urine flow rate (UFR) is an objective index to comprehensively reflect bladder function. The aim of this study was to investigate the association between caffeine intake and UFR using the National Health and Nutrition Examination Survey (NHANES) database. METHODS 14,142 participants were enrolled in this study. Weighted multivariate adjusted regression models were used to explore the relationship between caffeine intake and UFR. The dose-response relationships were explored using a restricted cubic spline (RCS) and a threshold effect analysis was conducted based on the inflection points identified by the two-segment linear regression model. In addition, subgroup analysis and sensitivity analysis were applied. RESULTS The findings suggested that the intake of caffeine was correlated with improved UFR [Model 3: 0.091 (0.057, 0.126), P value < 0.001]. In addition, the RCS supported a nonlinear relationship between them. The analysis of threshold effect further revealed a specific level of caffeine intake (34.51 mg/day) that exhibited a significant enhancement in UFR. Finally, through re-analyzing the data set obtained after multiple imputation (MI), we obtained similar results. CONCLUSION This study found a nonlinear beneficial relationship between caffeine intake and UFR, and revealed the recommended intake of caffeine. The values varied by gender, race, education, and smoking status.
Collapse
Affiliation(s)
- Yong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huiyi Su
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yingying Wang
- Department of Oncology, Chongqing Jiulongpo District People's Hospital, Chongqing, 400050, China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Ju YW, Pyo SH, Park SW, Moon CR, Lee S, Benashvili M, Park JE, Nho CW, Son YJ. Treatment of water extract of green tea during kale cultivation using a home vertical farming appliance conveyed catechins into kale and elevated glucosinolate contents. Curr Res Food Sci 2024; 9:100852. [PMID: 39319111 PMCID: PMC11421350 DOI: 10.1016/j.crfs.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
The growing interest in healthy diets has driven the demand for food ingredients with enhanced health benefits. In this study, we aimed to explore a method to enhance the bioactivity of kale using a home vertical farming appliance. Specifically, we investigated the effects of treating kale with a green tea water extract (GTE; 0.1-0.5 g/L in nutrient solution) for two weeks before harvest during five weeks of kale cultivation. GTE treatment did not negatively affect the key quality attributes, such as yield, semblance, or sensory properties. However, it led to the accumulation of bioactive compounds, epicatechin (EC) and epigallocatechin gallate (EGCG), which are typically absent in kale. In the control group, no catechins were detected, whereas in the GTE-treated group, the concentration of EC and EGCG were as high as 252.11 and 173.26 μg/g, respectively. These findings indicate the successful incorporation of catechins, known for their unique health-promoting properties, into kale. Additionally, GTE treatment enhanced the biosynthesis of glucosinolates, which are key secondary metabolites of kale. The total glucosinolate content increased from 9.56 μmol/g in the control group to 16.81 μmol/g in the GTE-treated group (treated with 0.5 g/L GTE). These findings showed that GTE treatment not only enriched kale with catechins, the primary bioactive compounds in green tea but also increased the levels of glucosinolates. This study, conducted using a home vertical farming appliance, suggests that bioactivity-enhanced kale can be grown domestically, providing consumers with a nutrient-fortified food source.
Collapse
Affiliation(s)
- Young-Woong Ju
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Su-Hyeon Pyo
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chae-Ryun Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
3
|
Jiří B, Jan G, Tomáš J, Patrik B, Andri F. Measuring critical force in sport climbers: a validation study of the 4 min all-out test on finger flexors. Eur J Appl Physiol 2024; 124:2787-2798. [PMID: 38668851 PMCID: PMC11365833 DOI: 10.1007/s00421-024-05490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The critical force (CF) concept, differentiating steady and non-steady state conditions, extends the critical power paradigm for sport climbing. This study aimed to validate CF for finger flexors derived from the 4 min all-out test as a boundary for the highest sustainable work intensity in sport climbers. METHODS Twelve participants underwent multiple laboratory visits. Initially, they performed the 4 min intermittent contraction all-out test for CF determination. Subsequent verification visits involved finger-flexor contractions at various intensities, including CF, CF -2 kg, CF -4 kg, and CF -6 kg, lasting for 720 s or until failure, while monitoring muscle-oxygen dynamics of forearm muscles. RESULTS CF, determined from the mean force of last three contractions, was measured at 20.1 ± 5.7 kg, while the end-force at 16.8 ± 5.2 kg. In the verification trials, the mean time to failure at CF was 440 ± 140 s, with only one participant completing the 720 s task. When the load was continuously lowered (-2 kg, -4 kg, and -6 kg), a greater number of participants (38%, 69%, and 92%, respectively) successfully completed the 720 s task. Changes of muscle-oxygen dynamics showed a high variability and could not clearly distinguish between exhaustive and non-exhaustive trials. CONCLUSIONS CF, based on the mean force of the last three contractions, failed to reliably predict the highest sustainable work rate. In contrast, determining CF as the end-force of the last three contractions exhibited a stronger link to sustainable work. Caution is advised in interpreting forearm muscle-oxygen dynamics, lacking sensitivity for nuanced metabolic responses during climbing-related tasks.
Collapse
Affiliation(s)
- Baláš Jiří
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic.
| | - Gajdošík Jan
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Javorský Tomáš
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Berta Patrik
- Faculty of Physical Education and Sport, Charles University, José Martího 31, 16252, Prague 6, Czech Republic
| | - Feldmann Andri
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Francescato G, Leitão MIPS, Orsini G, Petronilho A. Synthesis and Medicinal Applications of N-Heterocyclic Carbene Complexes Based on Caffeine and Other Xanthines. ChemMedChem 2024; 19:e202400118. [PMID: 38668124 DOI: 10.1002/cmdc.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Xanthines are purine derivatives predominantly found in plants. These include compounds such as caffeine, theophylline, and theobromine and exhibit a variety of pharmacological properties, demonstrating efficacy in treating neurodegenerative disorders, respiratory dysfunctions, and also cancer. The versatile attributes of these materials render them privileged scaffolds for the development of compounds for various biological applications. Xanthines are N-heterocyclic carbene precursors that combine a pyrimidine and an imidazole ring. Owing to their biological relevance, xanthines have been employed as N-heterocyclic carbenes in the development of metallodrugs for anticancer and antimicrobial purposes. In this conceptual review, we examine key examples of N-heterocyclic carbene complexes derived from caffeine and other xanthines, elucidating their synthetic methods and describing their pertinent medicinal applications.
Collapse
Affiliation(s)
- Giulia Francescato
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Maria Inês P S Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Giulia Orsini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| | - Ana Petronilho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157, Oeiras, Portugal
| |
Collapse
|
5
|
Asuku AO, Ayinla MT, Olajide TS, Oyerinde TO, Yusuf JA, Bayo-Olugbami AA, Fajemidagba GA. Coffee and Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:1-19. [PMID: 39168575 DOI: 10.1016/bs.pbr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease marked by dopaminergic neuronal loss and misfolded alpha-synuclein (α-syn) accumulation, which results in both motor and cognitive symptoms. Its occurrence grows with age, with a larger prevalence among males. Despite substantial study, effective medicines to reduce or stop the progression of diseases remain elusive. Interest has grown in examining dietary components, such as caffeine present in coffee, for potential medicinal effects. Epidemiological studies imply a lower incidence of PD with coffee drinking, attributable to caffeine's neuroprotective abilities. Beyond caffeine, coffee constituent like chlorogenic acid and cafestol have anti-Parkinsonian benefits. Moreover, coffee use has been related with variations in gut microbiota composition, which may reduce intestinal inflammation and prevent protein misfolding in enteric nerves, perhaps through the microbiota-gut-brain axis. This review gives a summary of the neuroprotective effects of coffee, investigating both its motor and non-motor advantages in individuals with PD as well as in experimental models of PD. We reviewed some bioactive constituents of coffee, their respective interactions with misfolded α-syn accumulation, and its emerging mechanisms associated to the gut microbiome.
Collapse
Affiliation(s)
- Abraham Olufemi Asuku
- Bioresources Development Centre, National Biotechnology Research and Development Agency, Ogbomoso, Oyo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| | - Maryam Tayo Ayinla
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Joshua Ayodele Yusuf
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | | | | |
Collapse
|
6
|
Qian Z, Huang Y, Zhang Y, Yang N, Fang Z, Zhang C, Zhang L. Metabolic clues to aging: exploring the role of circulating metabolites in frailty, sarcopenia and vascular aging related traits and diseases. Front Genet 2024; 15:1353908. [PMID: 38415056 PMCID: PMC10897029 DOI: 10.3389/fgene.2024.1353908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background: Physical weakness and cardiovascular risk increase significantly with age, but the underlying biological mechanisms remain largely unknown. This study aims to reveal the causal effect of circulating metabolites on frailty, sarcopenia and vascular aging related traits and diseases through a two-sample Mendelian Randomization (MR) analysis. Methods: Exposures were 486 metabolites analyzed in a genome-wide association study (GWAS), while outcomes included frailty, sarcopenia, arterial stiffness, atherosclerosis, peripheral vascular disease (PAD) and aortic aneurysm. Primary causal estimates were calculated using the inverse-variance weighted (IVW) method. Methods including MR Egger, weighted median, Q-test, and leave-one-out analysis were used for the sensitive analysis. Results: A total of 125 suggestive causative associations between metabolites and outcomes were identified. Seven strong causal links were ultimately identified between six metabolites (kynurenine, pentadecanoate (15:0), 1-arachidonoylglycerophosphocholine, androsterone sulfate, glycine and mannose) and three diseases (sarcopenia, PAD and atherosclerosis). Besides, metabolic pathway analysis identified 13 significant metabolic pathways in 6 age-related diseases. Furthermore, the metabolite-gene interaction networks were constructed. Conclusion: Our research suggested new evidence of the relationship between identified metabolites and 6 age-related diseases, which may hold promise as valuable biomarkers.
Collapse
Affiliation(s)
- Zonghao Qian
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Fang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yan Z, Zhang H, Li Y, Lu Z, Wang D, Zhao X, Wang S, Xie R, Li K. Seasonal distribution of caffeine in the Bohai Sea, Yellow Sea, and estuaries of Yantai City, China. MARINE POLLUTION BULLETIN 2024; 199:116008. [PMID: 38171162 DOI: 10.1016/j.marpolbul.2023.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
We employed a validated method to assess the seasonal variation and distribution of caffeine in the Bohai and Yellow Seas, as well as in Yantai urban estuaries and offshore region in northern China. Caffeine concentrations were highest during the summer in the Yellow Sea (1436.4 ng/L) and lowest in the Yantai urban offshore region during the spring and autumn and in the Yantai urban estuarine area and Bohai Sea during the winter (0.1 ng/L). There was significant variation in maximum caffeine levels among seasons across all regions examined, reaching a difference of 5980.5 times at the same sampling site between summer and winter. The caffeine concentration in the Yantai offshore region was significantly higher than in the Bohai and Yellow Seas. This study is the first investigation of seasonal fluctuations in the pollution levels of neurotoxic substances in the northern seas of China.
Collapse
Affiliation(s)
- Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 264005, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Derui Wang
- College of Marine Science, Beibu Gulf University, Qinzhou 535011, China
| | - Xiaodong Zhao
- School of Ocean, Yantai University, Yantai 264005, China
| | - Song Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruliang Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|