1
|
Mirhadi E, Butler AE, Kesharwani P, Sahebkar A. Utilizing stimuli-responsive nanoparticles to deliver and enhance the anti-tumor effects of bilirubin. Biotechnol Adv 2024; 77:108469. [PMID: 39427964 DOI: 10.1016/j.biotechadv.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Bilirubin (BR) is among the most potent endogenous antioxidants that originates from the heme catabolic pathway. Despite being considered as a dangerous and cytotoxic waste product at high concentrations, BR has potent antioxidant effects leading to the reduction of oxidative stress and inflammation, which play an important role in the development and progression of cancer. The purpose of this study is to introduce PEGylated BR nanoparticles (NPs), themselves or in combination with other anti-cancer agents. BR is effective when loaded into various nanoparticles and used in cancer therapy. Interestingly, BRNPs can be manipulated to create stimuli-responsive carriers providing a sustained and controlled, as well as on-demand, release of drug in response to internal or external factors such as reactive oxygen species, glutathione, light, enzymes, and acidic pH. This review suggests that BRNPs have the potential as tumor microenvironment-responsive delivery systems for effective targeting of various types of cancers.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chapeau D, Beekman S, Piet A, Li L, de Ridder C, Stuurman D, Seimbille Y. eSOMA-DM1, a Maytansinoid-Based Theranostic Small-Molecule Drug Conjugate for Neuroendocrine Tumors. Bioconjug Chem 2024; 35:1823-1834. [PMID: 39395152 DOI: 10.1021/acs.bioconjchem.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Background: The main challenges of conventional chemotherapy lie in its lack of selectivity and specificity, leading to significant side effects. Using a small-molecule drug conjugate (SMDC) ensures specific delivery of a cytotoxic drug to the tumor site by coupling it to a targeting vector. This promising strategy can be applied to neuroendocrine tumors (NETs) by choosing a targeting vector that binds specifically to somatostatin receptor subtype 2 (SSTR2). Additionally, incorporation of a bifunctional chelate into the molecule enables complexation of both diagnostic and therapeutic radionuclides. Thus, it facilitates monitoring of the distribution of the SMDC in the body and allows for the implementation of combination therapy. In our study, we designed eSOMA-DM1, a SMDC combining the SSTR2-targeted octreotate peptide and the cytotoxic agent DM1 via a chelate-bridged linker (N3-Py-DOTAGA). This approach warrants conjugation of the targeting vector and the drug at opposite sites to avoid undesired steric hindrance effects. Methods: Synthesis of the DM1 moiety (4) involved a three-step synthetic route, followed by the conjugation to the cyclic peptide, N3-Py-DOTAGA-d-Phe-cyclo[Cys-Tyr-d-Trp-Lys-Thr-Cys]-Thr-OH, through a copper-free click reaction, resulting in eSOMA-DM1. Subsequent labeling with [111In]InCl3 gave a high radiochemical yield and purity. In vitro assessments of eSOMA-DM1 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. Results: eSOMA-DM1 exhibited an IC50 value for SSTR2 similar to the gold standard DOTA-TATE. The uptake of [111In]In-eSOMA-DM1 in U2OS.SSTR2 cells was 1.2-fold lower than that of [111In]In-DOTA-TATE. Tumor uptake in H69-xenografted mice was higher for [111In]In-eSOMA-DM1 at all-time points compared to [111In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111In]In-eSOMA-DM1 in highly vascularized tissues, such as the lungs, skin, and heart. Excretion through the kidneys, liver, and spleen was also observed. Conclusion: eSOMA-DM1 is a SMDC developed for NET showing promising characteristics in vitro. However, the in vivo results obtained with [111In]In-eSOMA-DM1 suggest the need for adjustments to optimize its distribution.
Collapse
Affiliation(s)
- Dylan Chapeau
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Amber Piet
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Le Li
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| |
Collapse
|
3
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
4
|
Peng S, Li H, Cui W, Xiong T, Hu J, Qi H, Lin S, Wu D, Ji M, Xu H. Design, synthesis and biological evaluation of a novel PSMA-PI3K small molecule drug conjugate. RSC Med Chem 2024:d4md00246f. [PMID: 39246749 PMCID: PMC11378010 DOI: 10.1039/d4md00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Small molecule drug conjugates are an emerging targeted therapy for cancer treatment. Building upon the overexpressed prostate-specific membrane antigen (PSMA) in prostate cancer, we herein report the design and synthesis of a novel PSMA-PI3K small molecule drug conjugate 1. Conjugate 1 demonstrates potent inhibition against PI3K with an IC50 value of 0.40 nM and simultaneously targets PSMA, giving rise to selective growth inhibition activity for PSMA-positive cancer cells. Conjugate 1 also potently inhibits the phosphorylation of PI3K main downstream effectors and arrests the cell cycle in the G0/G1 phase in PSMA-positive 22Rv1 prostate cancer cells. Further in vivo evaluation shows that conjugate 1 has favorable efficacy and tolerability in a 22Rv1 xenograft model, demonstrating its potential application in targeted cancer therapy.
Collapse
Affiliation(s)
- Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| |
Collapse
|
5
|
Wang T, Li M, Wei R, Wang X, Lin Z, Chen J, Wu X. Small Molecule-Drug Conjugates Emerge as a New Promising Approach for Cancer Treatment. Mol Pharm 2024; 21:1038-1055. [PMID: 38344996 DOI: 10.1021/acs.molpharmaceut.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antibody drug conjugates (ADCs) have emerged as a new promising class of anti- cancer agents. However, limitations such as higher costs and unavoidable immunogenicity due to their relatively large structures cannot be ignored. Therefore, the development of lightweight drugs such as small molecule-drug conjugates (SMDCs) based on the ADC design idea has become a new option for targeted therapy. SMDCs are derived from the coupling of small-molecule targeting ligands with cytotoxic drugs. They are composed of three parts: small-molecule targeting ligands, cytotoxic molecules, and linkers. Compared with ADCs, SMDCs can be more rapidly and evenly dispersed into tumor tissues, with low cost and no immunogenicity. In this article, we will give a comprehensive review of different types of SMDCs currently under clinical trials to provide ideas and inspirations for the development of clinically applicable SMDCs.
Collapse
Affiliation(s)
- Tiansi Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Meichai Li
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xinyu Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai 201799, China
- Shandong University of Traditional Chinese Medicine, No.4655, University Road, Jinan, Shandong 250355, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| |
Collapse
|