1
|
El-Masry TA, El-Nagar MMF, Oriquat GA, Alotaibi BS, Saad HM, El Zahaby EI, Ibrahim HA. Therapeutic efficiency of Tamoxifen/Orlistat nanocrystals against solid ehrlich carcinoma via targeting TXNIP/HIF1-α/MMP-9/P27 and BAX/Bcl2/P53 signaling pathways. Biomed Pharmacother 2024; 180:117429. [PMID: 39293373 DOI: 10.1016/j.biopha.2024.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Orlistat (Orli) is an anti-obesity medication that has been approved by the US Food and Drug Administration. It has relatively limited oral bioavailability with promising inhibitory effects on cell proliferation as well as reducing the growth of tumors. AIMS This investigation was done to evaluate the potential protective effect of Tamoxifen/Orlistat nanocrystals alone or in combination against Solid Ehrlich Carcinoma (SEC) and to clarify the possible underlying influences. MATERIALS AND METHODS The liquid antisolvent precipitation technique (bottom-up technology) was utilized to manufacture Orlistat Nanocrystals. To explore potential causes for the anti-tumor action, female Swiss Albino mice bearing SEC were randomly assigned into five equal groups (n = 6). Group 1: Tumor control group, group 2: Tam group: tamoxifen (0.01 g/kg, IP), group 3: Free-Orli group: orlistat (0.24 g/kg, IP), group 4: Nano-Orli: orlistat nanocrystals (0.24 g/kg, IP), group 5: Tam-Nano-Orli: Both doses of Tam and Nano-Orli. All treatments were administered for 16 days. KEY FINDINGS The untreated mice showed development in the tumor volume and weight. As well as histopathology results from these mice revealed many tumor large cells as well as solid sheets of malignant cells. Also, untreated mice showed raised VEGF and TGF-1beta content. Moreover, results of gene expression in the SEC-bearing mice noted upregulation in HIF-1α, MMP-9, Bcl-2, and P27 gene expression and downregulation of TXNIP, BAX, and P53 gene expression. On the other hand, administrated TAM, Free-Orli, Nano-Orli, and a combination of Tam-Nano-Orli distinctly suppressed the tumor effects on estimated parameters with special reference to Tam-Nano-Orli. SIGNIFICANCE The developed Tamoxifen/Orlistat nanocrystals combination could be considered a promising approach to augment antitumor effects.
Collapse
Affiliation(s)
- Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Maysa M F El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghaleb Ali Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt.
| | - Enas I El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt.
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Alsunbul M, El-Masry TA, El Zahaby EI, Gaballa MMS, El-Nagar MMF. Potential Protective Effect of Orlistat: A Formulation of Nanocrystals Targeting Inflammation, Oxidative Stress, and Apoptosis in an Experimental Model of Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2024; 16:1356. [PMID: 39598480 PMCID: PMC11597902 DOI: 10.3390/pharmaceutics16111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Doxorubicin (DOX) is a widely used chemotherapeutic agent; nevertheless, cardiotoxicity limits its effectiveness. Orlistat (Orli) is an irreversible lipase enzyme inhibitor with poor solubility and bioavailability. Furthermore, Orli has a favorable impact on the decrease in cardiometabolic risk variables. Thus, this study aimed to investigate the novel use of Orlistat Nanocrystals (Orli-Nanocrystals) to mitigate DOX-induced cardiotoxicity and to identify probable pathways behind the cardioprotective effects. Methods: The pharmacokinetic parameters-area under % dose/g heart time curve (AUC0→4h), Drug targeting index (DTI), and relative targeting efficiency (RTE)-were calculated. Furthermore, experimental design mice were categorized into six groups: a (1) Normal control group, (2) Orli-Free group, (3) Orli-Nanocrystals group, (4) DOX group, (5) Orli-Free-DOX group, and (6) Orli-Nanocrystals-DOX group. All treatments were intraperitoneally injected once daily for 14 days with a single dose of DOX (15 mg/kg) on the 12th day for 4, 5, and 6 groups. Results: The pharmacokinetic parameters (Cmax, AUC) following oral administration of Orli-Nanocrystals presented a significant difference (higher values) in comparison to Orli due to the enhanced extent of the absorption of nanocrystals and, subsequently, their distribution to the heart. The study results indicated that DOX caused significant cardiotoxicity, as revealed by a remarkable rise in cardiac function biomarkers like LDH and CK-MB, which involve enzyme activities. Additionally, cardiac MDA content also increased; however, glutathione peroxidase, catalase, and superoxide dismutase activities were decreased. In the same context, DOX was found to have a remarkable downregulation in Nrf2, HO-1, Sirt-1, and Bcl2, while the upregulation of NF-κB, TNF-α, and BAX gene and protein expression occurred. Pretreatment with Orli-Nanocrystals displayed the most notable recovery of the altered immunohistochemical, histological, and biochemical characteristics as compared to the Orli-Free group. Conclusions: This work is the first investigation into the potential use of antioxidant, anti-inflammatory, and anti-apoptotic characteristics of Orli-Nanocrystals to protect against DOX-induced cardiotoxicity in vivo.
Collapse
Affiliation(s)
- Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
3
|
Alqahtani J, Mosalam EM, Abo Mansour HE, Elberri AI, Ibrahim HA, Mahgoub S, Hussein IA, Hawwal MF, Al Hmoudi M, Moglad E, Ahmed R, Mokhtar FA, Elekhnawy E, Negm WA. Anticancer Effect of Cycas media: Molecular Basis Through Modulation of PI3K/AKT/mTOR Signaling Pathway. Molecules 2024; 29:5013. [PMID: 39519654 PMCID: PMC11547819 DOI: 10.3390/molecules29215013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Many researchers are focusing on screening the biological activities of plants owing to their safety and possible pharmacological actions. Consequently, we aimed to explore the antiproliferative and cytotoxic properties of Cycas media methanolic extract on HepG2 cell lines. Moreover, we also explore the antitumor action against the experimentally induced solid Ehrlich carcinoma (SEC) model and investigate the possible involved molecular mechanisms. Also, the antibacterial action of the extract was elucidated. Different concentrations of the extract were incubated with HepG2 to determine cytotoxicity, followed by cell cycle analysis. The in vivo experiment was accomplished by grouping the animals into four different groups (n = 10); normal control, SEC, C. media 100, and C. media 200. The extract was administered at 100 and 200 mg/kg. Tumor volume, tumor inhibition rate, toxicity profile, and antioxidant biomarkers were determined. Moreover, the PI3K/AKT/mTOR signaling pathway was investigated as a possible underlying antitumor mechanism. The tumor control group showed a remarkable upregulation for PI3K, p-AKT, and p-mTOR, along with downregulation for the antioxidant SOD and GPX4, as well as decreased levels of GSH and MDA. C. media extract reversed these parameters to a significant level and the higher dose showed a superior antitumor effect. C. media extract showed antiproliferative effects against HepG2 cells, along with a suppressive action on the PI3K/AKT/mTOR pathway and an antioxidant effect. Additionally, C. media had antibacterial consequences against S. aureus isolates with minimum inhibitory concentrations from 32 to 128 µg/mL. It also caused a noteworthy growth delay as well as a notable reduction in the membrane integrity of S. aureus isolates. These beneficial outcomes suggest C. media to have potential antitumor and antibacterial activities.
Collapse
Affiliation(s)
- Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Menoufia National University, Birket El-Sab 32651, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig 44511, Egypt;
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Maryam Al Hmoudi
- Fujairah Research Centre, Sakamkam Road, Fujairah 00000, United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
5
|
Negm WA, Elekhnawy E, Mahgoub S, Ibrahim HA, Ibrahim Elberri A, Abo Mansour HE, Mosalam EM, Moglad E, Alzahraa Mokhtar F. Dioon rzedowskii: An antioxidant, antibacterial and anticancer plant extract with multi-faceted effects on cell growth and molecular signaling. Int Immunopharmacol 2024; 132:111957. [PMID: 38554441 DOI: 10.1016/j.intimp.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
This study investigated the antioxidant, anticancer, antibacterial properties of Dioon rzedowskii extract, which had not been previously explored. We aimed to determine the extract's effect on liver and breast cancer cell lines and on solid Ehrlich carcinoma (SEC) mouse model to investigate the underlying molecular mechanisms. Three female albino mice groups were established: a tumor control group, a group treated with 100 mg/kg of the extract (D100), and a group treated with 200 mg/kg of the extract (D200) for 16 days after tumor development. Results showed that the D. rzedowskii extract inhibited cell growth in both MCF-7 and HepG2 cells in a concentration-dependent manner. This was achieved by suppressing the cell proliferation and inducing apoptosis. The extract also improved liver, heart, and kidney functions compared to the tumor control. Furthermore, oral administration of the extract reduced tumor volume and alleviated oxidative stress in tumor tissue. The anticancer effects were associated with overexpression of p53 and Bax and downregulation of cyclin D1 expression, which was attributed to decreased phosphorylated MAPK kinases. Additionally, D. rzedowskii exhibited antibacterial activity against K. pneumoniae isolated from cancer patients. The extract inhibited bacterial growth and reduced the membrane integrity. The study suggests that D. rzedowskii has promising potential as an adjunctive therapy for cancer treatment. Further investigations are needed to explore its combined anticancer efficacy. These results emphasize the value of natural products in developing compounds with potential anticancer activity and support a paradigm shift in cancer management to improve patients' quality of life.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, Egypt
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt; Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia.
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt; Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
| |
Collapse
|