1
|
Ishida M, Ichikawa R, Ohbuchi K, Oizumi H, Miyamoto Y, Yamauchi J. A tardive dyskinesia drug target VMAT-2 participates in neuronal process elongation. Sci Rep 2025; 15:12049. [PMID: 40200061 PMCID: PMC11978964 DOI: 10.1038/s41598-025-97308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Tardive dyskinesia involves involuntary movements of body parts and is often observed in individuals taking antipsychotics for extended periods. Initial treatment strategies include reducing medication dosage, switching medications, or using drugs to suppress symptoms. One of the therapeutic targets for tardive dyskinesia is vesicular monoamine transporter-2 (VMAT-2, also known as solute carrier family 18 member A2 [SLC18A2]), which functions as an energy-dependent transporter of monoamines. The therapeutic drugs are used during adulthood, when neurons are maturing. For the first time, we report that treatment with a chemical VMAT-2 inhibitor reduces neuronal process elongation, a phenomenon commonly observed during development. Treatment with the inhibitors reserpine or tetrabenazine decreased process elongation in primary cortical neurons, and similar results were obtained in N1E-115 neuronal model cells undergoing process elongation. Knockdown of VMAT-2 using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas13-fitted guide RNA also reduced process elongation. However, treatment with reserpine or tetrabenazine did not affect the morphology of mature processes. Notably, treatment with hesperetin, a citrus flavonoid with neuroprotective effects, was able to restore the reduced process elongation induced by these inhibitors or VMAT-2 knockdown. The underlying molecular mechanism appeared to involve neuronal differentiation-related Akt kinase signaling. These results suggest that VMAT-2, as a drug target for tardive dyskinesia, plays a key role in process elongation and that some inhibitory effects of VMAT-2-targeted drugs on its elongation may be mitigated by co-administering a neuroprotective molecule.
Collapse
Affiliation(s)
- Miki Ishida
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ryuya Ichikawa
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, 200-1192, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, 200-1192, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
2
|
Ersoy E, Boga M, Kaplan A, Mataraci Kara E, Eroglu Ozkan E, Demirci Kayiran S. LC-HRMS Profiling of Phytochemicals with Assessment of Antioxidant, Anticholinesterase, and Antimicrobial Potentials of Astragalus Brachystachys DC. Chem Biodivers 2025; 22:e202401853. [PMID: 39400994 DOI: 10.1002/cbdv.202401853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Astragalus species are ubiquitous in the pharmacopeia of numerous countries, signifying their widespread medicinal applications. Türkiye is esteemed as one of the principal epicenters of diversity for this genus with 483 taxa, and many of these plants have been traditionally utilized for diseases including coughing, diabetes, cardiovascular disorders, and aches. Although there is a considerable body of chemical and biological research available on several Astragalus species, studies focusing on Astragalus brachystachys DC are exceedingly rare. In this context, This study provides the first comprehensive report on this medicinal plant the chemical constituents and biological activities of an important medicinal plant, Astragalus brachystachys DC. The aerial part samples were collected from Adana, Türkiye, and an ethanol extract was prepared with these parts. The secondary metabolites of the extract were determined by an LC-HRMS analysis. The LC-HRMS analysis showed the presence of 39 different constituents, hyperoside (303.419±10.50 μg/g extract), p-coumaric acid (256.975±8.51 μg/g extract), and rutin (72.684±2.23 μg/g extract) were determined as major compounds in the aerial parts ethanol extract. Attributed to its high total phenolic (58.53±1.30 μg PEs/mg extract) and total flavonoid content (29.98±0.83 μg QEs/mg extract), the extract demonstrated strong antioxidant activity according to three different assays namely DPPH free (IC50: 33.08±0.61 μg/mL), and ABTS cation radical scavenging (IC50: 15.39±0.72 μg/mL) and CUPRAC activity (A0.5: 36.25±0.28 μg/mL) methods. In vitro assays showed that cholinesterase inhibitory activity results were found to be exceptional with 85.95±0.52 % inhibition on acetylcholinesterase and 66.32±1.33 % inhibition on butyrylcholinesterase at 200 μg/mL. Regarding antimicrobial properties, Astragalus brachystachys DC extract was found to be effective against Enterococcus faecalis with a MIC value of 39.06 μg/mL.
Collapse
Affiliation(s)
- Ezgi Ersoy
- Department of Pharmacognosy, Faculty of Pharmacy, Biruni University, Topkapı, Istanbul, 34010, Türkiye
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, 21280, Sur, Türkiye
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman, 72060, Türkiye
| | - Emel Mataraci Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Beyazıt, Türkiye
| | - Esra Eroglu Ozkan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Beyazit, Türkiye
| | - Serpil Demirci Kayiran
- Cukurova University, Faculty of Pharmacy, Pharmaceutical Botany Department, Adana, Türkiye
| |
Collapse
|
3
|
Benslama O, Lekmine S, Moussa H, Tahraoui H, Ola MS, Zhang J, Amrane A. Silymarin as a Therapeutic Agent for Hepatocellular Carcinoma: A Multi-Approach Computational Study. Metabolites 2025; 15:53. [PMID: 39852395 PMCID: PMC11767256 DOI: 10.3390/metabo15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and lethal form of liver cancer with limited treatment options. Silymarin, a flavonoid complex derived from milk thistle, has shown promise in liver disease treatment due to its antioxidant, anti-inflammatory, and anticancer properties. This study aims to explore the therapeutic potential of silymarin in HCC through a comprehensive in silico approach. METHODS This study employed a network pharmacology approach to identify key molecular targets of silymarin in HCC. The Genecards and Metascape databases were used for target identification and functional annotation. Molecular docking analysis was conducted on the primary silymarin components against VEGFA and SRC proteins, which are critical in HCC progression. MD simulations followed to assess the stability and interactions of the docked complexes. RESULTS Network pharmacology analysis identified several key molecular targets and pathways implicated in HCC. The molecular docking results revealed strong binding affinities of silymarin components to VEGFA and SRC, with Silybin A and Isosilybin B showing the highest affinities. MD simulations confirmed the stability of these interactions, indicating potential inhibitory effects on HCC progression. CONCLUSIONS This study provides a comprehensive in silico evaluation of silymarin's therapeutic potential in HCC. The findings suggest that silymarin, particularly its components Silybin A and Isosilybin B, may effectively target VEGFA and SRC proteins, offering a promising avenue for HCC treatment. Further experimental validation is warranted to confirm these findings and facilitate the development of silymarin-based therapeutics for HCC.
Collapse
Affiliation(s)
- Ouided Benslama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
4
|
Lekmine S, Benslama O, Bensalah B, Touzout N, Moussa H, Tahraoui H, Ola MS, Hafsa H, Zhang J, Amrane A. Bioactive Phenolics of Hyoscyamus muticus L. Subsp. Falezlez: A Molecular and Biochemical Approach to Antioxidant and Urease Inhibitory Activities. Int J Mol Sci 2025; 26:370. [PMID: 39796225 PMCID: PMC11719793 DOI: 10.3390/ijms26010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of Hyoscyamus muticus L. subsp. falezlez (Coss.) Maire. Using LC-ESI-MS/MS, 19 distinct phenolic compounds were identified, with chlorogenic acid being the most abundant. The ethanol extract demonstrated notable antioxidant activity, highlighting its potential for therapeutic use. Urease inhibition assays revealed a remarkable 91.35% inhibition by the H. muticus extract, with an IC50 value of 5.6 ± 1.20 μg/mL, indicating its promising role in addressing conditions linked to urease activity. Molecular docking studies further investigated the interaction between H. muticus phenolic compounds and urease, identifying hyperoside as a leading candidate, with a binding energy of -7.9 kcal/mol. Other compounds, such as rutin, luteolin, apigenin, kaempferol, hesperetin, chlorogenic acid, and rosmarinic acid, also demonstrated significant binding affinities, suggesting their potential to disrupt urease function. These findings highlight the therapeutic potential of H. muticus as a source of natural bioactive compounds, offering promising avenues for the development of novel treatments for urease-related disorders and oxidative stress.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Bachir Bensalah
- Department of Biology, Faculty of Natural and Life Sciences, University of Ghardaia, Ghardaia 47000, Algeria
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haroun Hafsa
- Laboratory of Reaction Engineering, USTHB, BP 32, Algiers 16111, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
5
|
Lekmine S, Benslama O, Ola MS, Touzout N, Moussa H, Tahraoui H, Hafsa H, Zhang J, Amrane A. Preliminary Data on Silybum marianum Metabolites: Comprehensive Characterization, Antioxidant, Antidiabetic, Antimicrobial Activities, LC-MS/MS Profiling, and Predicted ADMET Analysis. Metabolites 2025; 15:13. [PMID: 39852356 PMCID: PMC11768079 DOI: 10.3390/metabo15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Silybum marianum extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential. METHODS The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods. Antioxidant activity was assessed using DPPH, ABTS, CUPRAC, Phenanthroline, and FRAP assays. Enzyme inhibition assays were conducted to evaluate antidiabetic activity against α-glucosidase and α-amylase. Antimicrobial activity was determined using the disc diffusion method, and in silico ADMET and drug-likeness analyses were performed for key metabolites. RESULTS The extract contained 251.2 ± 1.2 mg GAE/g of total phenolics and 125.1 ± 1.6 mg QE/g of total flavonoids, with 33 metabolites identified, including phenolic acids, tannins, flavonoids, and flavolignans. Strong antioxidant activity was observed, with IC50 values of 19.2 ± 2.3 μg/mL (DPPH), 7.2 ± 1.7 μg/mL (ABTS), 22.2 ± 1.2 μg/mL (CUPRAC), 35.2 ± 1.8 μg/mL (Phenanthroline), and 24.1 ± 1.2 μg/mL (FRAP). Antidiabetic effects were significant, with IC50 values of 18.1 ± 1.7 μg/mL (α-glucosidase) and 26.5 ± 1.3 μg/mL (α-amylase). Antimicrobial activity demonstrated inhibition zones of 8.9 ± 1.1 mm (Bacillus subtilis), 12.6 ± 1.6 mm (Escherichia coli), 8.2 ± 1.2 mm (Fusarium oxysporum), and 9.2 ± 1.1 mm (Aspergillus niger). In silico analyses showed high absorption, favorable metabolism and excretion, and minimal toxicity, with no hERG channel inhibition or hepatotoxicity. CONCLUSIONS The comprehensive results highlight the significant antioxidant, antidiabetic, and antimicrobial activities of S. marianum extract, suggesting its potential for therapeutic and preventive applications.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Haroun Hafsa
- Laboratory of Reaction Engineering, USTHB, BP 32, Algiers 16111, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
6
|
Moussa H, Hamid S, Mameri A, Lekmine S, Tahraoui H, Kebir M, Touzout N, Dahmoune F, Ola MS, Zhang J, Amrane A. From Green Chemistry to Healthy Environments: Silver Nanoparticles as a Dual Antioxidant and Antibacterial Agents for Advancing Biomedicine and Sustainable Wastewater Treatment. Bioengineering (Basel) 2024; 11:1205. [PMID: 39768025 PMCID: PMC11673432 DOI: 10.3390/bioengineering11121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) using plant extracts is an eco-friendly method with potential for biomedical and environmental applications. This study aims to synthesize silver nanoparticles (SO-AgNPs) using Salvia officinalis L. extract and evaluate their antioxidant and antibacterial properties, positioning them as candidates for applications in sustainable biomedicine and wastewater treatment. S. officinalis L. extract was used to synthesize AgNPs under optimized conditions, with a 10% extract/AgNO₃ ratio and a reaction time of 180 min. The SO-AgNPs were characterized using ATR-FTIR, XRD, SEM, DLS, and Zeta potential analysis. The antioxidant activity of the extract and SO-AgNPs was evaluated using ABTS+• and DPPH• radical scavenging assays. Antibacterial activity was tested against 11 bacterial strains and bacteria isolated from industrial effluent, with minimal inhibitory concentrations (MIC) determined for both the extract and SO-AgNPs. The SO-AgNPs demonstrated potent antioxidant activity, with IC₅₀ values of 0.233 mg/mL and 0.305 mg/mL in the ABTS+• assay, and 0.173 mg/mL and 0.185 mg/mL in the DPPH• assay for the extract and SO-AgNPs, respectively. Antibacterial testing showed MIC values of 0.25 mg/mL for SO-AgNPs and between 3.12 and 6.25 mg/mL for S. officinalis L. extract against E. coli, P. aeruginosa, A. baumannii, MRSA, B. cereus, and S. epidermidis. For bacteria isolated from industrial effluent, the MIC values were 0.125 mg/mL for SO-AgNPs and 0.5 mg/mL for the extract. This study highlights the dual antioxidant and antibacterial capabilities of S. officinalis L. extract and SO-AgNPs, demonstrating their potential for use in both biomedical and environmental applications, including wastewater treatment.
Collapse
Affiliation(s)
- Hamza Moussa
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance (LGVRNAQ), Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria; (H.M.); (A.M.)
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Sarah Hamid
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Amal Mameri
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance (LGVRNAQ), Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria; (H.M.); (A.M.)
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria; (H.T.) (N.T.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France;
| | - Mohammed Kebir
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Tipaza 42004, Algeria;
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols–(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun 16100, Algeria
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria; (H.T.) (N.T.)
| | - Farid Dahmoune
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France;
| |
Collapse
|
7
|
Hao Z, Lu C, Wang M, Li S, Wang Y, Yan Y, Ding Y, Li Y. Systematic investigation on the pharmaceutical components and mechanism of the treatment against zebrafish enteritis by Sporisorium reilianum f. sp. reilianum based on histomorphology and pathology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118574. [PMID: 39019416 DOI: 10.1016/j.jep.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sporisorium reilianum f. sp. reilianum (SSR) is a fungus isolated from a medicinal plant. Recorded in the "Compilation of National Chinese Herbal Medicine" and "Compendium of Materia Medica," it was used for preventing and treating intestinal diseases, enhancing immune function, etc. In this study, we investigated the chemical composition and bioactivity of SSR. Network pharmacology is utilized for predictive analysis and targeting pathway studies of anti-inflammatory bowel disease (IBD) mechanisms. Pharmacological activity against enteritis is evaluated using zebrafish (Danio rerio) as model animals. AIM OF THE STUDY To reveal the treatment of IBD by SSR used as traditional medicine and food, based on molecular biology identification of SSR firstly, and the pharmaceutical components & its toxicities, biological activity & mechanism of SSR were explored. MATERIALS AND METHODS Using chromatography and zebrafish IBD model induced by dextran sulfate sodium (DSS), nine compounds were first identified by nuclear magnetic resonance (NMR). The toxicity of ethanol crude extract and monomers from SSR were evaluated by evaluating the phenotypic characteristics of zebrafish embryos and larvae, histomorphology and pathology of the zebrafish model guided by network pharmacology were conducted. RESULTS The zebrafish embryo development did not show toxicity. The molecular docking and enrichment pathway results predicted that metabolites 3 & 4 (N-trans- feruloyl-3-methoxytyramine & N-cis-feruloyl-3-methoxytyramine) and 7 & 8 (4-N- trans-p-coumaroyltyramine & 4-N-cis--p-coumaroyltyramine) have anti-enteritis activities. This paper lays an experimental foundation for developing new drugs and functional foods.
Collapse
Affiliation(s)
- Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shuxia Li
- Jinmanwu Agricultural Science and Technology Development Co., LTD., Liaoyuan, 136200, China.
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuli Yan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|