1
|
Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021; 41:2927-2970. [PMID: 34114227 DOI: 10.1002/med.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.,CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Lyu HN, Ma N, Meng Y, Zhang X, Wong YK, Xu C, Liao F, Jiang T, Tu Y, Wang J. Study towards improving artemisinin-based combination therapies. Nat Prod Rep 2021; 38:1243-1250. [PMID: 34287440 DOI: 10.1039/d0np00079e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: Up to 2020 Artemisinin has made a significant contribution towards global malaria control since its initial discovery. Countless lives have been saved by this unique and miraculous molecule. In 2006, artemisinin-based combination therapies (ACTs) were recommended by the World Health Organization (WHO) as the first-line treatment for uncomplicated malaria infection and have since remained as the mainstays of the antimalarial treatment. Even so, substantial efforts to pursue better curative effects for the treatment of malaria have never ceased, particularly with regards to the circumstances surrounding the appearance of delayed clearance of malaria parasites by 3 day ACT treatments in South-East Asian countries. Strategies to further optimize artemisinin-based therapies, including synthesizing better artemisinin derivatives, developing advanced drug delivery systems, and diversifying artemisinin partner drugs, have been proposed over the past few years. Here, we provide an updated account of the continuous efforts in improving ACTs for better efficacy in curing malarial infection.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Nan Ma
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuqing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yin-Kwan Wong
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chengchao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. and The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Fulong Liao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Tingliang Jiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Youyou Tu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China and Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China and Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China and The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| |
Collapse
|
3
|
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med Res Rev 2020; 40:1220-1275. [PMID: 31930540 DOI: 10.1002/med.21657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
According to WHO World Malaria Report (2018), nearly 219 million new cases of malaria occurred and a total no. of 435 000 people died in 2017 due to this infectious disease. This is due to the rapid spread of parasite-resistant strains. Artemisinin (ART), a sesquiterpene lactone endoperoxide isolated from traditional Chinese herb Artemisia annua, has been recognized as a novel class of antimalarial drugs. The 2015 "Nobel Prize in Physiology or Medicine" was given to Prof Dr Tu Youyou for the discovery of ART. Hence, ART is termed as "Nobel medicine." The present review article accommodates insights from the chronological advancements and direct statistics witnessed during the past 48 years (1971-2019) in the medicinal chemistry of ART-derived antimalarial endoperoxides, and their clinical utility in malaria chemotherapy and drug discovery.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
4
|
Fröhlich T, Çapcı Karagöz A, Reiter C, Tsogoeva SB. Artemisinin-Derived Dimers: Potent Antimalarial and Anticancer Agents. J Med Chem 2016; 59:7360-88. [PMID: 27010926 DOI: 10.1021/acs.jmedchem.5b01380] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of new efficient therapeutics for the treatment of malaria and cancer is an important endeavor. Over the past 15 years, much attention has been paid to the synthesis of dimeric structures, which combine two units of artemisinin, as lead compounds of interest. A wide variety of atemisinin-derived dimers containing different linkers demonstrate improved properties compared to their parent compounds (e.g., circumventing multidrug resistance), making the dimerization concept highly compelling for development of efficient antimalarial and anticancer drugs. The present Perspective highlights recent developments on different types of artemisinin-derived dimers and their structural and functional features. Particular emphasis is put on the respective in vitro and in vivo studies, exploring the role of the length and nature of linkers on the activities of the dimers, and considering the future prospects of the dimerization concept for drug discovery.
Collapse
Affiliation(s)
- Tony Fröhlich
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Aysun Çapcı Karagöz
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Christoph Reiter
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| |
Collapse
|