1
|
Obořilová R, Kučerová E, Botka T, Vaisocherová-Lísalová H, Skládal P, Farka Z. Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity. Sci Rep 2025; 15:3419. [PMID: 39870739 PMCID: PMC11772602 DOI: 10.1038/s41598-024-85064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 ΔtarM, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Eliška Kučerová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hana Vaisocherová-Lísalová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Palafox-Rivera P, Tapia-Rodriguez MR, Lopez-Romero JC, Lugo-Flores MA, Quintero-Cabello KP, Silva-Espinoza BA, Cruz-Valenzuela MR, Nazzaro F, Ayala-Zavala JF. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. BIOFOULING 2025:1-13. [PMID: 39757560 DOI: 10.1080/08927014.2024.2435018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.
Collapse
Affiliation(s)
- Patricia Palafox-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Melvin R Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Col. Centro, Ciudad Obregón, Sonora, México
| | - Julio Cesar Lopez-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Eleazar Ortiz Caborca, Sonora, México
| | - Marco A Lugo-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Karen P Quintero-Cabello
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Brenda A Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - M Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | | | - J Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| |
Collapse
|
3
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2025; 14:13-57. [PMID: 39549153 PMCID: PMC11782739 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Momen S, Soleimani N, Azizmohseni F, Ahmadbeigi Y, Borhani S, Amini-Bayat Z. Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability. AMB Express 2024; 14:143. [PMID: 39724336 DOI: 10.1186/s13568-024-01812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance. ZAM-MSC chimeric endolysin has three domains derived from SAL1 and lysostaphin, which target the peptide bridge of peptidoglycan. In this study purified ZAM-MSC (with yield of 30 mg/lit) had bactericidal activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations (2.38 μg/ml and 1.88 μg/ml, respectively). The antibacterial spectrum revealed that ZAM-MSC was active against diverse Staphylococci. it has maintained 100% stability after 24 h incubation in pH 5 to 10 against S. aureus, as well as demonstrated significant thermostability and maintained nearly its full activity at different temperatures (4-42 °C) up to 1 day of incubation. The anti-biofilm activity of various concentrations of ZAM-MSC against MSSA and MRSA biofilms was not dose-dependent, and antibiofilm activity was observed even at low concentrations (14 μg/ml). Further, the molecular dynamics simulations demonstrated that the ZAM-MSC chimer and its parent proteins remained dynamically stable, showing similar flexibility despite the size and hydrogen bond number differences. In conclusion, the study reveals that chimeric ZAM-MSC is a distinctive enzyme with exceptional biochemical properties and rapid lytic activity against Staphylococci.
Collapse
Affiliation(s)
- Sanaz Momen
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farzaneh Azizmohseni
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Yasaman Ahmadbeigi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seddigheh Borhani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Amini-Bayat
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
5
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024; 24:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
6
|
Xu S, Lee I, Kwon SJ, Kim E, Nevo L, Straight L, Murata H, Matyjaszewski K, Dordick JS. Split fluorescent protein-mediated multimerization of cell wall binding domain for highly sensitive and selective bacterial detection. N Biotechnol 2024; 82:54-64. [PMID: 38750815 DOI: 10.1016/j.nbt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Eunsol Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Liv Nevo
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Lorelli Straight
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | | | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA.
| |
Collapse
|
7
|
Ram G, Chiu L, Dey S, Ross HF, Cammer M, Novick RP. ABD-3, the confluence of powerful antibacterial modalities: ABDs delivering and expressing lss, the gene encoding lysostaphin. Antimicrob Agents Chemother 2024; 68:e0023524. [PMID: 39072634 PMCID: PMC11373205 DOI: 10.1128/aac.00235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.
Collapse
Affiliation(s)
- Geeta Ram
- Departments of Medicine and Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- Cellinfinity Bio, New Haven, Connecticut, USA
| | - LiTing Chiu
- Departments of Medicine and Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Somrita Dey
- Departments of Medicine and Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Hope F. Ross
- Departments of Medicine and Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, New York, USA
| | - Richard P. Novick
- Departments of Medicine and Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Zeng P, Zhang P, Chan HW, Chow SF, Lam JKW, Ip M, Leung SSY. Storage stability of lysostaphin solution and its pulmonary delivery. Drug Deliv Transl Res 2024; 14:2433-2443. [PMID: 38231385 PMCID: PMC11291608 DOI: 10.1007/s13346-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Ka Wing Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
10
|
Kerdkumthong K, Chanket W, Runsaeng P, Nanarong S, Songsurin K, Tantimetta P, Angsuthanasombat C, Aroonkesorn A, Obchoei S. Two Recombinant Bacteriocins, Rhamnosin and Lysostaphin, Show Synergistic Anticancer Activity Against Gemcitabine-Resistant Cholangiocarcinoma Cell Lines. Probiotics Antimicrob Proteins 2024; 16:713-725. [PMID: 37294416 DOI: 10.1007/s12602-023-10096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Cholangiocarcinoma (CCA), a bile duct cancer with a high mortality rate, has a poor prognosis due to its highly invasive and drug-resistant phenotypes. More effective and selective therapies are urgently needed. Bacteriocins are broad-spectrum antimicrobial peptides/proteins produced by bacterial strains to compete with other bacteria. Recent studies have reported that bacteriocins exhibit anticancer properties against various cancer cell lines with minimal toxicity toward normal cells. In this study, two types of recombinant bacteriocins, rhamnosin from probiotic Lacticaseibacillus rhamnosus and lysostaphin from Staphylococcus simulans, were highly produced in Escherichia coli and subsequently purified via immobilized-Ni2+ affinity chromatography. When their anticancer activity was investigated against CCA cell lines, both rhamnosin and lysostaphin were found capable of inhibiting the growth of CCA cell lines in a dose-dependent fashion but were less toxic toward a normal cholangiocyte cell line. Rhamnosin and lysostaphin as single treatments could suppress the growth of gemcitabine-resistant cell lines to the same extent as or more than they suppressed the parental counterparts. A combination of both bacteriocins more strongly inhibited growth and enhanced cell apoptosis in both parental and gemcitabine-resistant cells partly through the increased expression of the proapoptotic genes BAX, and caspase-3, -8, and -9. In conclusion, this is the first report to demonstrate an anticancer property of rhamnosin and lysostaphin. Using these bacteriocins as single agents or in combination would be effective against drug-resistant CCA.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Wannarat Chanket
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sutthipong Nanarong
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Kawinnath Songsurin
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Phonprapavee Tantimetta
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, 90110, Songkhla, Thailand.
| |
Collapse
|
11
|
Landa G, Aguerri L, Irusta S, Mendoza G, Arruebo M. PLGA nanoparticle-encapsulated lysostaphin for the treatment of Staphylococcus aureus infections. Int J Biol Macromol 2024; 271:132563. [PMID: 38782313 DOI: 10.1016/j.ijbiomac.2024.132563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Staphylococcus aureus possesses the ability to become pathogenic, leading to severe and life-threatening infections. Its methicillin-resistant variant MRSA has garnered high-priority status due to its increased morbidity and associated mortality. This emphasizes the urgency for novel anti-staphylococcal agents. The bacteriocin lysostaphin stands out for its remarkable bactericidal activity against S. aureus, including MRSA, outperforming conventional antibiotics. However, the clinical application of lysostaphin faces challenges, including enzymatic activity loss under physiological conditions and potential immunogenicity. This study introduces a novel approach by encapsulating lysostaphin within polylactic-co-glycolic acid (PLGA) nanoparticles, a biodegradable copolymer known for its biocompatibility and sustained drug release ability. The study assesses the antimicrobial activity of lysostaphin-loaded PLGA nanoparticles against different S. aureus strains, and we also used GFP-expressing S. aureus for facilitating its traceability in planktonic, biofilm, and intracellular infection models. The results showed the significant reduction in bacteria viability both in planktonic and biofilm states. The in vitro intracellular infection model demonstrated the significantly enhanced efficiency of the developed nanoparticles compared to the treatment with the free bacteriocin. This research presents lysostaphin encapsulation within PLGA nanoparticles and offers promising avenues for enhancing lysostaphin's therapeutic efficacy against S. aureus infections.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Laura Aguerri
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Department of Pharmacology and Physiology, Forensic and Legal Medicine, University of Zaragoza, 50009 Zaragoza, Spain.
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
13
|
Twomey E, O’Connor PM, Coffey A, Kiste M, Guinane CM, Hill C, Field D, Begley M. Inhibition of Clinical MRSA Isolates by Coagulase Negative Staphylococci of Human Origin. Antibiotics (Basel) 2024; 13:338. [PMID: 38667016 PMCID: PMC11047365 DOI: 10.3390/antibiotics13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus is frequently highlighted as a priority for novel drug research due to its pathogenicity and ability to develop antibiotic resistance. Coagulase-negative staphylococci (CoNS) are resident flora of the skin and nares. Previous studies have confirmed their ability to kill and prevent colonization by S. aureus through the production of bioactive substances. This study screened a bank of 37 CoNS for their ability to inhibit the growth of methicillin-resistant S. aureus (MRSA). Deferred antagonism assays, growth curves, and antibiofilm testing performed with the cell-free supernatant derived from overnight CoNS cultures indicated antimicrobial and antibiofilm effects against MRSA indicators. Whole genome sequencing and BAGEL4 analysis of 11 CoNS isolates shortlisted for the inhibitory effects they displayed against MRSA led to the identification of two strains possessing complete putative bacteriocin operons. The operons were predicted to encode a nukacin variant and a novel epilancin variant. From this point, strains Staphylococcus hominis C14 and Staphylococcus epidermidis C33 became the focus of the investigation. Through HPLC, a peptide identical to previously characterized nukacin KQU-131 and a novel epilancin variant were isolated from cultures of C14 and C33, respectively. Mass spectrometry confirmed the presence of each peptide in the active fractions. Spot-on-lawn assays demonstrated both bacteriocins could inhibit the growth of an MRSA indicator. The identification of natural products with clinically relevant activity is important in today's climate of escalating antimicrobial resistance and a depleting antibiotic pipeline. These findings also highlight the prospective role CoNS may play as a source of bioactive substances with activity against critical pathogens.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | | | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | - Maija Kiste
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| |
Collapse
|
14
|
Jayakumar J, Vinod V, Arumugam T, Sathy BN, Biswas L, Kumar VA, Biswas R. Efficacy of Lysostaphin functionalized silicon catheter for the prevention of Staphylococcus aureus biofilm. Int J Biol Macromol 2024; 256:128547. [PMID: 38048926 DOI: 10.1016/j.ijbiomac.2023.128547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Staphylococcus aureus readily forms biofilms on tissue and indwelling catheter surfaces. These biofilms are resistant to antibiotics. Consequently, effective prevention and treatment strategies against staphylococcal biofilms are actively being pursued over the past two decades. One of the proposed strategies involve the incorporation of antibiotics and antiseptics into catheters, however, a persistent concern regarding the possible emergence of antimicrobial resistance is associated with these medical devices. In this study, we developed two types of silicone catheters: one with Lysostaphin (Lst) adsorbed onto the surface, and the other with Lst functionalized on the surface. To confirm the presence of Lst protein on the catheter surface, we conducted FTIR-ATR and SEM-EDS analysis. Both catheters exhibited hemocompatibility, biocompatibility, and demonstrated antimicrobial and biofilm prevention activities against both methicillin-sensitive and resistant strains of S. aureus. Furthermore, the silicone catheters that were surface-functionalized with Lst showed substantially better and more persistent anti-biofilm effects when compared to the catheters where Lst was surface-adsorbed, both under in vitro static and flow conditions, as well as in vivo in BALB/c mice. These results indicate that surface-functionalized Lst catheters have the potential to serve as a promising new medical device for preventing S. aureus biofilm infections in humans.
Collapse
Affiliation(s)
- Jayalakshmi Jayakumar
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Vivek Vinod
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Binulal Nelson Sathy
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| |
Collapse
|
15
|
Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol 2023; 23:311. [PMID: 37884887 PMCID: PMC10601153 DOI: 10.1186/s12866-023-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, China
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
17
|
Nouruzi E, Hosseini SM, Asghari B, Mahjoub R, Zare EN, Shahbazi MA, Kalhori F, Arabestani MR. Effect of poly (lactic-co-glycolic acid) polymer nanoparticles loaded with vancomycin against Staphylococcus aureus biofilm. BMC Biotechnol 2023; 23:39. [PMID: 37723466 PMCID: PMC10506343 DOI: 10.1186/s12896-023-00811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.
Collapse
Affiliation(s)
- Ellahe Nouruzi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| | - Babak Asghari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fereshte Kalhori
- Biotechnology department, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| |
Collapse
|
18
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
19
|
Charoenjotivadhanakul S, Sakdee S, Imtong C, Li HC, Angsuthanasombat C. Conserved loop residues-Tyr 270 and Asn 372 near the catalytic site of the lysostaphin endopeptidase are essential for staphylolytic activity toward pentaglycine binding and catalysis. Biochem Biophys Res Commun 2023; 668:111-117. [PMID: 37245291 DOI: 10.1016/j.bbrc.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.
Collapse
Affiliation(s)
- Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
20
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
21
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
22
|
Shestak NV, Grishin AV, Lyashchuk AM, Lunin VG, Anna SK. The choice of chromatographic resin for the purification of recombinant lysostaphin affects its activity. Protein Expr Purif 2023; 207:106274. [PMID: 37084838 DOI: 10.1016/j.pep.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lysostaphin is a zinc-dependent endopeptidase that is effective against both antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus aureus. Lysostaphin is typically purified on cation-exchange or metal-chelate affinity resins, and there are data indicating potential influence of the chromatographic resin on the lysostaphin activity. In this study, we systematically investigated the impact of the resin used to purify the recombinant lysostaphin on its activity. To this end, recombinant lysostaphin with an additional histidine tag at the C-terminus was purified using a cation-exchange resin, three types of nickel-chelate resins with different strength of metal ion binding, or a zinc-chelate resin. Lysostaphin samples purified on the cation-exchange resin (WorkBeads 40S), the nickel-chelate resin with the strong nickel ion binding (WorkBeads NiMAC), and the zinc-chelate resin (WorkBeads NTA with immobilized zinc ions) had equal activity. On the contrary, the activity of lysostaphin preparations purified on nickel-chelate resins with medium (WorkBeads Ni-NTA) and relatively weak (WorkBeads Ni-IDA) nickel ion binding was significantly reduced. The decrease in activity can be explained by the interaction of lysostaphin with the nickel ions leached from the resin and is caused by either the exchange of the zinc ion in the lysostaphin active center with a nickel ion from the resin, or binding of an additional ion that inhibits the enzymatic activity. Removal of metal ions from the active site of lysostaphin and subsequent incorporation of the native zinc ions lead to complete restoration of the activity of the enzyme.
Collapse
Affiliation(s)
- Nikita V Shestak
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation.
| | - Alexander V Grishin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation.
| | - Alexander M Lyashchuk
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation
| | - Vladimir G Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation
| | - S Karyagina Anna
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation; A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation
| |
Collapse
|
23
|
Kudinova A, Grishin A, Grunina T, Poponova M, Bulygina I, Gromova M, Choudhary R, Senatov F, Karyagina A. Antibacterial and Anti-Biofilm Properties of Diopside Powder Loaded with Lysostaphin. Pathogens 2023; 12:pathogens12020177. [PMID: 36839449 PMCID: PMC9959908 DOI: 10.3390/pathogens12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Diopside-based ceramic is a perspective biocompatible material with numerous potential applications in the field of bone prosthetics. Implantable devices and materials are often prone to colonization and biofilm formation by pathogens such as Staphylococcus aureus, which in the case of bone grafting leads to osteomyelitis, an infectious bone and bone marrow injury. To lower the risk of bacterial colonization, implanted materials can be impregnated with antimicrobials. In this work, we loaded the antibacterial enzyme lysostaphin on diopside powder and studied the antibacterial and antibiofilm properties of such material to probe the utility of this approach for diopside-based prosthetic materials. METHODS Diopside powder was synthesized by the solid-state method, lysostaphin was loaded on diopside by adsorption, the release of lysostaphin from diopside was monitored by ELISA, and antibacterial and anti-biofilm activity was assessed by standard microbiological procedures. RESULTS AND CONCLUSIONS Lysostaphin released from diopside powder showed high antibacterial activity against planktonic bacteria and effectively destroyed 24-h staphylococcal biofilms. Diopside-based materials possess a potential for the development of antibacterial bone grafting materials.
Collapse
Affiliation(s)
- Alina Kudinova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Alexander Grishin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| | - Tatiana Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Maria Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Inna Bulygina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Gromova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kipsala Street 6A, LV-1048 Riga, Latvia
| | - Fedor Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Anna Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| |
Collapse
|
24
|
Engineering a "detect and destroy" skin probiotic to combat methicillin-resistant Staphylococcus aureus. PLoS One 2022; 17:e0276795. [PMID: 36520793 PMCID: PMC9754240 DOI: 10.1371/journal.pone.0276795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
The prevalence and virulence of pathogens such as methicillin-resistant Staphylococcus (S.) aureus (MRSA), which can cause recurrent skin infections, are of significant clinical concern. Prolonged antibiotic exposure to treat or decolonize S. aureus contributes to development of antibiotic resistance, as well as depletion of the microbiome, and its numerous beneficial functions. We hypothesized an engineered skin probiotic with the ability to selectively deliver antimicrobials only in the presence of the target organism could provide local bioremediation of pathogen colonization. We constructed a biosensing S. epidermidis capable of detecting the presence of S. aureus quorum sensing autoinducer peptide and producing lysostaphin in response. Here, we demonstrate in vitro activity of this biosensor and present and discuss challenges to deployment of this and other engineered topical skin probiotics.
Collapse
|
25
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Siddiqui F, Ulker M, Laizure IE, Johnson KC. Engineered device in E. coli lyses S. aureus at physiological fever temperatures. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000616. [PMID: 35983013 PMCID: PMC9379641 DOI: 10.17912/micropub.biology.000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
Multiple strains of Staphylococcus are resistant to antibiotics, including the well-known methicillin-resistant Staphylococcus aureus (MRSA). We share an engineered plasmid device in Escherichia coli that lyses the disease-causing pathogen, S. aureus. The device was engineered using BioBrick parts obtained from the International Genetically Engineered Machine foundation (iGEM). The cI-blue-lysostaphin device consists of a temperature-sensitive promoter that is activated under physiological fever temperatures above 35°C that drives expression of a blue chromoprotein reporter and mature truncated lysostaphin enzyme. The functioning cI-blue-lysostaphin device was tested for optimal lysis conditions in MM294 and DH5α E. coli chassis and across incubation temperatures ranging from 30-42°C. We conclude that the lysostaphin activity of the cI-blue-lysostaphin device differs between chassis and increases with greater incubation temperature.
Collapse
Affiliation(s)
| | - Meliha Ulker
- University of New Hampshire Manchester, Manchester, NH USA
| | | | - Kristen C Johnson
- University of New Hampshire Manchester, Manchester, NH USA
,
Correspondence to: Kristen C Johnson (
)
| |
Collapse
|
27
|
Chen KJ, Lee CK. Self-cleaved expression of recombinant lysostaphin from its cellulose binding domain fusion. Appl Microbiol Biotechnol 2022; 106:5023-5033. [PMID: 35790549 DOI: 10.1007/s00253-022-12047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Mature lysostaphin (mLst) is a glycineglycine endopeptidase, capable of specifically cleaving penta-glycine crosslinker in the peptidoglycan of Staphylococcus aureus cell wall. It is a very effective therapeutic enzyme to kill the multidrug-resistant S. aureus often encountered in hospital acquired infections. Fusing cellulose binding domain (CBD) to mLst significantly reduced the insoluble expression of mLst in E. coli. Employing mLst-cleavable peptides as fusion linkers leaded to an effective self-cleavage expression that CBD and mLst could be completely cleaved off from the fusions during the expression process. The presence of residue linker fragment at N-terminus of the cleaved-off mLst strongly inhibited the cell lytic activity of the recovered recombinant mLst, and only ~ 50% of the wild-type mLst activity could be retained. Intact CBD-Lst fusions were obtained when uncleavable peptide linkers were employed. With CBD at N-terminus of mLst, the intact fusion completely lost its cell lytic activity but the dipeptidase activity still remained. In contrast, approximately 10% cell lytic activity of mLst still could be maintained for the fusion with CBD at C-terminus of mLst. KEY POINTS: • CBD fusion enhanced soluble expression of recombinant lysostaphin. • In vivo self-cleavage of fusion linkers by the expressed lysostaphin fusions. • Self-cleaved lysostaphin fusions retain most of dipeptidase but lose 50% cell lytic activity.
Collapse
Affiliation(s)
- Kuan-Jung Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan.
| |
Collapse
|
28
|
Activity of Exebacase (CF-301) against Biofilms Formed by Staphylococcus epidermidis Strains Isolated from Prosthetic Joint Infections. Antimicrob Agents Chemother 2022; 66:e0058822. [PMID: 35861539 PMCID: PMC9380561 DOI: 10.1128/aac.00588-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis
is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures.
Collapse
|
29
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
30
|
Fernandes A, Jobby R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 2022; 194:4377-4399. [PMID: 35290605 DOI: 10.1007/s12010-022-03870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides that have long been used in the food industry. Being a highly diverse and heterogeneous group of molecules the classification is ever-evolving. Their production is widespread among bacteria; nevertheless, their biosynthesis and mode of action remain fairly similar. With the advances in drug resistance mechanisms, it is important to look for alternatives to conventional approaches. Therefore, the advantages of bacteriocin over antibiotics need to be considered to provide a scientific basis for their use. Particularly in the last decade, intensive studies look at their potential as next-generation therapeutics against drug-resistant bacteria. Bacteriocins from lactic acid bacteria are being tested as controlling agents for bacterial and viral infections; they can inhibit biofilm synthesis and have potential as contraceptives. Bioengineered peptides have shown enhanced activity and thereby indicate the lack of knowledge we possess regarding these bacteriocins. In this review, we have listed various Gram-positive LAB bacteriocins with their synthesis and mechanism of action. Recent developments in screening and purification technologies have been analyzed with an emphasis on their potential clinical applications. Although extensive research has been done to identify multifunctional bacteriocins, it is important to focus on the mechanism of action of these peptides to get them from bench to bedside.
Collapse
Affiliation(s)
- Abigail Fernandes
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India. .,Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Maharashtra, 410206, India.
| |
Collapse
|
31
|
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030390. [PMID: 35326853 PMCID: PMC8944833 DOI: 10.3390/antibiotics11030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases caused by bacteria represent a global threat to human health. However, due to the abuse of antibiotics, drug-resistant bacteria have evolved rapidly and led to the failure of antibiotics treatment. Alternative antimicrobial strategies different to traditional antibiotics are urgently needed. Enzyme-based antibacterials (Enzybiotics) have gradually attracted interest owing to their advantages including high specificity, rapid mode-of-action, no resistance development, etc. However, due to their low stability, potential immunogenicity, and high cost of natural enzymes, enzybiotics have limitations in practical antibacterial therapy. In recent years, many nanomaterials with enzyme-like activities (Nanozymes) have been discovered as a new generation of artificial enzymes and perform catalytic antibacterial effects against bacterial resistance. To highlight the progress in this field of nanozyme-based antibacterials (Nanozybiotics), this review discussed the antibacterial mechanism of action of nanozybiotics with a comparison with enzybiotics. We propose that nanozybiotics may bear promising applications in antibacterial therapy, due to their high stability, rapid bacterial killing, biofilm elimination, and low cost.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
32
|
Hamad M, Al-Marzooq F, Srinivasulu V, Omar HA, Sulaiman A, Zaher DM, Orive G, Al-Tel TH. Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters. Front Microbiol 2022; 13:823394. [PMID: 35178043 PMCID: PMC8846302 DOI: 10.3389/fmicb.2022.823394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienaymé and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 μg/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.
Collapse
Affiliation(s)
- Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farah Al-Marzooq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashna Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
33
|
Mehkri Y, Felisma P, Panther E, Lucke-Wold B. Osteomyelitis of the spine: treatments and future directions. INFECTIOUS DISEASES RESEARCH 2022; 3:3. [PMID: 35211699 PMCID: PMC8865404 DOI: 10.53388/idr20220117003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Osteomyelitis of the spine is a serious condition that has been increasing with the intravenous drug pandemic and aging population. Multiple different organisms can cause osteomyelitis and mainstay of treatment is early recognition and antibiotics. The course can sometimes be indolent leading to delayed presentations. Once suspected, comprehensive workup and initiation of management should be employed. In rare circumstances, surgical evacuation or deformity correction is indicated. Continued antibiotic treatment should be considered post-operatively. METHODS Emerging treatment solutions are being developed to help target osteomyelitis in a more effective manner. In this review, we highlight the epidemiology and pathophysiology of spinal osteomyelitis. We overview the diagnostic workup and treatment options. Finally, we present new options that are currently being investigated and are on the near horizon. CONCLUSION This review offers a user friendly resource for clinicians and researchers regarding osteomyelitis of the spine and will serve as a catalyst for further discovery.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Patrick Felisma
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Eric Panther
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| |
Collapse
|
34
|
Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020125. [PMID: 35203727 PMCID: PMC8868216 DOI: 10.3390/antibiotics11020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including amidase, peptidase, holin, and phospholipase D/transphosphatidylase. The differential expression of genes obtained from RNA-seq was confirmed by reverse transcription quantitative PCR. Moreover, some of these gene expression changes were consistent with the observed structural perturbations at the DNA and RNA levels. These structural changes in the genes encoding membrane/cell surface proteins and altered gene expressions are the candidates for resistance to these novel antimicrobials. The findings in this study could provide insight into the design of new antimicrobial agents.
Collapse
|
35
|
Grujović MŽ, Mladenović KG, Semedo-Lemsaddek T, Laranjo M, Stefanović OD, Kocić-Tanackov SD. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr Rev Food Sci Food Saf 2022; 21:1537-1567. [PMID: 35029033 DOI: 10.1111/1541-4337.12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Traditional fermented foods are a significant source of starter and/or non-starter lactic acid bacteria (nsLAB). Moreover, these microorganisms are also known for their role as probiotics. The potential of nsLAB is huge; however, there are still challenges to be overcome with respect to characterization and application. In the present review, the most important steps that autochthonous lactic acid bacteria isolated from fermented foods need to overcome, to qualify as novel starter cultures, or as probiotics, in food technology and biotechnology, are considered. These different characterization steps include precise identification, detection of health-promoting properties, and safety evaluation. Each of these features is strain specific and needs to be accurately determined. This review highlights the advantages and disadvantages of nsLAB, isolated from traditional fermented foods, discussing safety aspects and sensory impact.
Collapse
Affiliation(s)
- Mirjana Ž Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Katarina G Mladenović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Olgica D Stefanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Sunčica D Kocić-Tanackov
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
36
|
Lee Y, Cho HS, Choi M, Prathap S, Soundrarajan N, Choi Y, Song H, Hong K, Park C. Comparison of DNA/RNA yield and integrity between PMAP36-mediated and other bacterial lysis methods. J Microbiol Methods 2021; 193:106396. [PMID: 34921868 DOI: 10.1016/j.mimet.2021.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Currently, several methods are available for the isolation of bacterial DNA and RNA. However, the diversity and complexity of cell envelope structures limit their efficiency depending on the target bacterial species. In this study, we compared the differences in yield and integrity of RNA prepared from four gram-negative and six gram-positive bacterial species using bead-beating, bacteriolytic protein, and PMAP36-vortexing methods. Similarly, we also compared the efficiency of DNA extraction from Staphylococcus aureus. Physical disruption of bacterial cells showed versatility in breaking cells against all tested species; however, a decrease in the integrity of isolated DNA and RNA was observed. Among membranolytic proteins, PMAP36 showed the most promising results, in terms of both the yield and integrity of the prepared nucleic acids. Our results show that each method has inherent advantages and disadvantages depending on its application. Therefore, the characteristics of each method and target species should be considered before the extraction of bacterial DNA and RNA.
Collapse
Affiliation(s)
- Yunjung Lee
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hye-Sun Cho
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Munjeong Choi
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Somasundaram Prathap
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | | | - Youngsok Choi
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hyuk Song
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Kwonho Hong
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Chankyu Park
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
37
|
Far BE, Ragheb M, Rahbar R, Mafakher L, Nojookambari NY, Achinas S, Yazdansetad S. Cloning and expression of Staphylococcus simulans lysostaphin enzyme gene in Bacillus subtilis WB600. AIMS Microbiol 2021; 7:271-283. [PMID: 34708172 PMCID: PMC8500799 DOI: 10.3934/microbiol.2021017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Lysostaphin is a glycylglycine endopeptidase, secreted by Staphylococcus simulans, capable of specifically hydrolyzing pentaglycine crosslinks present in the peptidoglycan of the Staphylococcus aureus cell wall. In this paper, we describe the cloning and expression of the lysostaphin enzyme gene in Bacillus subtilis WB600 host using pWB980 expression system. Plasmid pACK1 of S. simulans was extracted using the alkaline lysis method. Lysostaphin gene was isolated by PCR and cloned into pTZ57R/T-Vector, then transformed into Escherichia coli DH5α. The amplified gene fragment and uncloned pWB980 vector were digested using PstI and XbaІ enzymes and purified. The restricted gene fragment was ligated into the pWB980 expression vector by the standard protocols, then the recombinant plasmid was transformed into B. subtilis WB600 using electroporation method. The recombinant protein was evaluated by the SDS-PAGE method and confirmed by western immunoblot. Analysis of the target protein showed a band corresponding to 27-kDa r-lysostaphin. Protein content was estimated 91 mg/L by Bradford assay. The recombinant lysostaphin represented 90% of its maximum activity at 40 °C and displayed good thermostability by keeping about 80% of its maximum activity at 45 °C. Heat residual activity assay of recombinant lysostaphin demonstrated that the enzyme stability was up to 40 °C and showed good stability at 40 °C for 16 h incubation.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ragheb
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ladan Mafakher
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajjad Yazdansetad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
38
|
Lin X, He J, Li W, Qi Y, Hu H, Zhang D, Xu F, Chen X, Zhou M. Lung-Targeting Lysostaphin Microspheres for Methicillin-Resistant Staphylococcus aureus Pneumonia Treatment and Prevention. ACS NANO 2021; 15:16625-16641. [PMID: 34582183 DOI: 10.1021/acsnano.1c06460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional antimicrobial strategies are urgently needed to treat methicillin-resistant Staphylococcus aureus (MRSA) caused pneumonia due to its increasing resistance, enhanced virulence, and high pathogenicity. Here, we report that lysostaphin, a bacteriolytic enzyme, encapsulated within poly(lactic-co-glycolic acid) microspheres (LyIR@MS) specially treats planktonic MRSA bacteria, mature biofilms, and related pneumonia. Optimized LyIR@MS with suitable diameters could deliver a sufficient amount of lysostaphin to the lung without a decrease in survival rate after intravenous injection. Furthermore, the degradable properties of the carrier make it safe for targeted release of lysostaphin to eliminate MRSA, repressing the expression of virulence genes and improving the sensitivity of biofilms to host neutrophils. In the MRSA pneumonia mouse model, treatment or prophylaxis with LyIR@MS significantly improved survival rate and relieved inflammatory injury without introducing adverse events. These findings suggest the clinical translational potential of LyIR@MS for the treatment of MRSA-infected lung diseases.
Collapse
Affiliation(s)
- Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wanlin Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dongxiao Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Min Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
39
|
Fleming E, Pabst V, Scholar Z, Xiong R, Voigt AY, Zhou W, Hoyt A, Hardy R, Peterson A, Beach R, Ondouah-Nzutchi Y, Dong J, Bateman L, Vernon SD, Oh J. Cultivation of common bacterial species and strains from human skin, oral, and gut microbiota. BMC Microbiol 2021; 21:278. [PMID: 34649516 PMCID: PMC8515726 DOI: 10.1186/s12866-021-02314-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genomics-driven discoveries of microbial species have provided extraordinary insights into the biodiversity of human microbiota. In addition, a significant portion of genetic variation between microbiota exists at the subspecies, or strain, level. High-resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. High-throughput approaches are needed to acquire and identify the significant species- and strain-level diversity present in the oral, skin, and gut microbiome. Here, we describe and validate a streamlined workflow for cultivating dominant bacterial species and strains from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. RESULTS Of total genera discovered by either metagenomic sequencing or culturomics, our cultivation pipeline recovered between 18.1-44.4% of total genera identified. These represented a high proportion of the community composition reconstructed with metagenomic sequencing, ranging from 66.2-95.8% of the relative abundance of the overall community. Fourier-Transform Infrared spectroscopy (FT-IR) was effective in differentiating genetically distinct strains compared with whole-genome sequencing, but was less effective as a proxy for genetic distance. CONCLUSIONS Use of a streamlined set of conditions selected for cultivation of skin, oral, and gut microbiota facilitates recovery of dominant microbes and their strain variants from a relatively large sample set. FT-IR spectroscopy allows rapid differentiation of strain variants, but these differences are limited in recapitulating genetic distance. Our data highlights the strength of our cultivation and characterization pipeline, which is in throughput, comparisons with high-resolution genomic data, and rapid identification of strain variation.
Collapse
Affiliation(s)
- Elizabeth Fleming
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Victor Pabst
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Zoe Scholar
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Ruoyun Xiong
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Anita Y Voigt
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Wei Zhou
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Amelia Hoyt
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Rachel Hardy
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Anna Peterson
- The University of Connecticut Health Center, Farmington, CT, USA
| | - Ryan Beach
- The University of Connecticut Health Center, Farmington, CT, USA
| | | | - Jinhong Dong
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | | | | | - Julia Oh
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA.
| |
Collapse
|
40
|
Pérez-Ramos A, Madi-Moussa D, Coucheney F, Drider D. Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins. Microorganisms 2021; 9:2107. [PMID: 34683428 PMCID: PMC8538875 DOI: 10.3390/microorganisms9102107] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB-bacteriocins) may serve as alternatives for aging antibiotics. LAB-bacteriocins can be used alone, or in some cases as potentiating agents to treat bacterial infections. This approach could meet the different calls and politics, which aim to reduce the use of traditional antibiotics and develop novel therapeutic options. Considering the clinical applications of LAB-bacteriocins as a reasonable and desirable therapeutic approach, it is therefore important to assess the advances achieved in understanding their modes of action, and the resistance mechanisms developed by the producing bacteria to their own bacteriocins. Most LAB-bacteriocins act by disturbing the cytoplasmic membrane through forming pores, or by cell wall degradation. Nevertheless, some of these peptides still have unknown modes of action, especially those that are active against Gram-negative bacteria. Regarding immunity, most bacteriocin-producing strains have an immunity mechanism involving an immunity protein and a dedicated ABC transporter system. However, these immunity mechanisms vary from one bacteriocin to another.
Collapse
Affiliation(s)
| | | | | | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (A.P.-R.); (D.M.-M.); (F.C.)
| |
Collapse
|
41
|
Garrido V, Piñero‐Lambea C, Rodriguez‐Arce I, Paetzold B, Ferrar T, Weber M, Garcia‐Ramallo E, Gallo C, Collantes M, Peñuelas I, Serrano L, Grilló M, Lluch‐Senar M. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol Syst Biol 2021; 17:e10145. [PMID: 34612607 PMCID: PMC8493563 DOI: 10.15252/msb.202010145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Victoria Garrido
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Irene Rodriguez‐Arce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Bernhard Paetzold
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- S‐Biomedic N.V.BeerseBelgium
| | - Tony Ferrar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Garcia‐Ramallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - María Collantes
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Iván Peñuelas
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - María‐Jesús Grilló
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - María Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| |
Collapse
|
42
|
An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection. Antibiotics (Basel) 2021; 10:antibiotics10101186. [PMID: 34680767 PMCID: PMC8533017 DOI: 10.3390/antibiotics10101186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Orthopaedic device-related infection (ODRI) presents a significant challenge to the field of orthopaedic and trauma surgery. Despite extensive treatment involving surgical debridement and prolonged antibiotic therapy, outcomes remain poor. This is largely due to the unique abilities of Staphylococcus aureus, the most common causative agent of ODRI, to establish and protect itself within the host by forming biofilms on implanted devices and staphylococcal abscess communities (SACs). There is a need for novel antimicrobials that can readily target such features. Enzybiotics are a class of antimicrobial enzymes derived from bacteria and bacteriophages, which function by enzymatically degrading bacterial polymers essential to bacterial survival or biofilm formation. Here, we apply an enzybiotic-based combination regimen to a set of in vitro models as well as in a murine ODRI model to evaluate their usefulness in eradicating established S. aureus infection, compared to classical antibiotics. We show that two chimeric endolysins previously selected for their functional efficacy in human serum in combination with a polysaccharide depolymerase reduce bacterial CFU numbers 10,000-fold in a peg model and in an implant model of biofilm. The enzyme combination also completely eradicates S. aureus in a SAC in vitro model where classical antibiotics are ineffective. In an in vivo ODRI model in mice, the antibiofilm effects of this enzyme regimen are further enhanced when combined with a classical gentamicin/vancomycin treatment. In a mouse model of methicillin-resistant S. aureus (MRSA) ODRI following a fracture repair, a combined local enzybiotic/antibiotic treatment regimen showed a significant CFU reduction in the device and the surrounding soft tissue, as well as significant prevention of weight loss. These outcomes were superior to treatment with antibiotics alone. Overall, this study demonstrates that the addition of enzybiotics, which are distinguished by their extremely rapid killing efficacy and antibiofilm activities, can enhance the treatment of severe MRSA ODRI.
Collapse
|
43
|
Choyam S, Jain PM, Kammara R. Characterization of a Potent New-Generation Antimicrobial Peptide of Bacillus. Front Microbiol 2021; 12:710741. [PMID: 34504482 PMCID: PMC8421597 DOI: 10.3389/fmicb.2021.710741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
An antimicrobial peptide [Bacillus antimicrobial peptide (BAMP)] produced by Bacillus paralicheniformis was isolated from the Indian traditional fermented food and characterized. The antimicrobial peptide BAMP showed many unique features such as thermostability (4.0-125°C), pH tolerance (pH 2.0-9.0), and resistance to physiological enzymes (trypsin, chymotrypsin, pepsin, proteinase K, protease, and catalase), and food-grade metal salts do not inhibit the activity. The broad spectrum of BAMP (antimicrobial activity) makes it a suitable candidate for food preservation as well as antimicrobial therapy. BAMP was found to exhibit a bacteriostatic effect on Salmonella typhi and controls the viability of Listeria monocytogenes in chicken meat efficiently. BAMP was found to establish eubiosis, as it is not antagonistic to Lactobacillus. Its non-hemolytic nature makes it suitable for therapy. Various genome prediction tools were adopted and applied to understand their localization, gene arrangement, and type of antimicrobials. Founded on its superior functional attributes, BAMP is a potent new-generation antimicrobial peptide.
Collapse
Affiliation(s)
| | | | - Rajagopal Kammara
- Department of Protein Chemistry and Technology, Faculty of AcSIR, CSIR-CFTRI, Mysore, India
| |
Collapse
|
44
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
46
|
Arroyo-Moreno S, Begley M, Dembicka K, Coffey A. Engineering of the CHAPk Staphylococcal Phage Endolysin to Enhance Antibacterial Activity against Stationary-Phase Cells. Antibiotics (Basel) 2021; 10:antibiotics10060722. [PMID: 34208478 PMCID: PMC8235606 DOI: 10.3390/antibiotics10060722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteriophage endolysins and their derivatives have strong potential as antibacterial agents considering the increasing prevalence of antibiotic resistance in common bacterial pathogens. The peptidoglycan degrading peptidase CHAPk, a truncated derivate of staphylococcal phage K endolysin (LysK), has proven efficacy in preventing and disrupting staphylococcal biofilms. Nevertheless, the concentration of CHAPk required to eliminate populations of stationary-phase cells was previously found to be four-fold higher than that for log-phase cells. Moreover, CHAPk-mediated lysis of stationary-phase cells was observed to be slower than for log-phase cultures. In the present study, we report the fusion of a 165 amino acid fragment containing CHAPk with a 136 amino acid fragment containing the cell-binding domain of the bacteriocin lysostaphin to create a chimeric enzyme designated CHAPk-SH3blys in the vector pET28a. The chimeric protein was employed in concentrations as low as 5 μg/mL, producing a reduction in turbidity in 7-day-old cultures, whereas the original CHAPk required at least 20 μg/mL to achieve this. Where 7-day old liquid cultures were used, the chimeric enzyme exhibited a 16-fold lower MIC than CHAPk. In terms of biofilm prevention, a concentration of 1 μg/mL of the chimeric enzyme was sufficient, whereas for CHAPk, 125 μg/mL was needed. Moreover, the chimeric enzyme exhibited total biofilm disruption when 5 μg/mL was employed in 4-h assays, whereas CHAPk could only partially disrupt the biofilms at this concentration. This study demonstrates that the cell-binding domain from lysostaphin can make the phage endolysin CHAPk more effective against sessile staphylococcal cells.
Collapse
Affiliation(s)
- Sara Arroyo-Moreno
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland; (S.A.-M.); (M.B.); (K.D.)
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland; (S.A.-M.); (M.B.); (K.D.)
- APC Microbiome Institute, University College, Cork T12 YT20, Ireland
| | - Kornelia Dembicka
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland; (S.A.-M.); (M.B.); (K.D.)
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland; (S.A.-M.); (M.B.); (K.D.)
- APC Microbiome Institute, University College, Cork T12 YT20, Ireland
- Correspondence: ; Tel.: +353-214-335-486
| |
Collapse
|
47
|
Human skin microbiota-friendly lysostaphin. Int J Biol Macromol 2021; 183:852-860. [PMID: 33932416 DOI: 10.1016/j.ijbiomac.2021.04.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Growing antibiotic resistance of bacteria is a burning problem of human and veterinary medicine. Expansion and introduction of novel microbicidal therapeutics is highly desirable. However, antibiotic treatment disturbs the balance of physiological microbiota by changing its qualitative and/or quantitative composition, resulting in a number of adverse effects that include secondary infections. Although such dysbiosis may be reversed by the treatment with probiotics, a more attractive alternative is the use of antibiotics that target only pathogens, while sparing the commensals. Here, we describe lysostaphin LSp222, an enzyme produced naturally by Staphylococcus pseudintermedius 222. LSp222 is highly effective against S. aureus, including its multi-drug resistant strains. Importantly, the inhibitory concentration for S. epidermidis, the predominant commensal in healthy human skin, is at least two orders of magnitude higher compared to S. aureus. Such significant therapeutic window makes LSp222 a microbiota-friendly antibacterial agent with a potential application in the treatment of S. aureus-driven skin infections.
Collapse
|
48
|
Cho HS, Choi M, Lee Y, Jeon H, Ahn B, Soundrarajan N, Hong K, Kim JH, Park C. High-Quality Nucleic Acid Isolation from Hard-to-Lyse Bacterial Strains Using PMAP-36, a Broad-Spectrum Antimicrobial Peptide. Int J Mol Sci 2021; 22:ijms22084149. [PMID: 33923762 PMCID: PMC8073543 DOI: 10.3390/ijms22084149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
The efficiency of existing cell lysis methods to isolate nucleic acids from diverse bacteria varies depending on cell wall structures. This study tested a novel idea of using broad-spectrum antimicrobial peptides to improve the lytic efficiency of hard-to-lyse bacteria and characterized their differences. The lysis conditions of Staphylococcus aureus using recombinant porcine myeloid antimicrobial peptide 36 (PMAP-36), a broad-spectrum pig cathelicidin, was optimized, and RNA isolation was performed with cultured pellets of ten bacterial species using various membranolytic proteins. Additionally, three other antimicrobial peptides, protegrin-1 (PG-1), melittin, and nisin, were evaluated for their suitability as the membranolytic agents of bacteria. However, PMAP-36 use resulted in the most successful outcomes in RNA isolation from diverse bacterial species. The amount of total RNA obtained using PMAP-36 increased by ~2-fold compared to lysozyme in Salmonella typhimurium. Streptococci species were refractory to all lytic proteins tested, although the RNA yield from PMAP-36 treatment was slightly higher than that from other methods. PMAP-36 use produced high-quality RNA, and reverse transcription PCR showed the efficient amplification of the 16S rRNA gene from all tested strains. Additionally, the results of genomic DNA isolation were similar to those of RNA isolation. Thus, our findings present an additional option for high quality and unbiased nucleic acid isolation from microbiomes or challenging bacterial strains.
Collapse
|
49
|
Shen W, Yang N, Teng D, Hao Y, Ma X, Mao R, Wang J. Design and High Expression of Non-glycosylated Lysostaphins in Pichia pastoris and Their Pharmacodynamic Study. Front Microbiol 2021; 12:637662. [PMID: 33815324 PMCID: PMC8012855 DOI: 10.3389/fmicb.2021.637662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 01/21/2023] Open
Abstract
Lysostaphin is an effective antimicrobial agent to Staphylococcus, especially for the methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Staphylococcus aureus (MDRSA). In this study, the seven lysostaphin derived mutants (rLys) were designed to overcome the barrier of glycosylation during expression in Pichia pastoris. Among them, 127A and 127A232Q had highest antimicrobial activity (MIC values 0.07–0.3 μM) to S. aureus than others and the commercial lysostaphins (1–15.8 times). There was no glycosylation during the expression in 5-L fermenter level, with the high yield of 1315 mg/L (127A) and 1141 mg/L (127A232Q), respectively. Meanwhile, 127A and 127A232Q effectively killed 99.9% of S. aureus at low concentration (1 × MIC) within 30 min, without the regrowth of pathogen. They also showed low toxicity, high pH and temperature stability. The results of in vivo therapeutic effect of 127A and 127A232Q against high virulent S. aureus CVCC546 showed that 127A and 127A232Q increased the survival rate of infected mice up to 100% at the dose of 10 mg/kg than the untreated group, reduced the bacterial translocation by 5-7 log CFU (over 99%) in organs compared to the untreated group and alleviated multiple-organ injuries (liver, kidney and spleen). These data indicated that the non-glycosylated lysostaphin 127A and 127A232Q may be a promising therapeutic agent against MDR staphylococcal infections.
Collapse
Affiliation(s)
- Wenluan Shen
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
50
|
Electrostatic-Mediated Affinity Tuning of Lysostaphin Accelerates Bacterial Lysis Kinetics and Enhances In Vivo Efficacy. Antimicrob Agents Chemother 2021; 65:AAC.02199-20. [PMID: 33468459 DOI: 10.1128/aac.02199-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.
Collapse
|