1
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
2
|
McCabe MC, Okamura DM, Erickson CB, Perry BW, Brewer CM, Nguyen ED, Saviola AJ, Majesky MW, Hansen KC. ECM-Focused Proteomic Analysis of Ear Punch Regeneration in Acomys Cahirinus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561940. [PMID: 37873317 PMCID: PMC10592745 DOI: 10.1101/2023.10.11.561940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.
Collapse
|
3
|
Extracellular Matrix Remodeling in Chronic Liver Disease. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:41-52. [PMID: 34337431 PMCID: PMC8300084 DOI: 10.1007/s43152-021-00030-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. RECENT FINDINGS The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. SUMMARY Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. GRAPHICAL ABSTRACT
Collapse
|
4
|
Zhang YQ, Zhao F, Song L, Gan HY, Xie XF. Systematic Review and Meta-analysis of Endostar Combined With Transcatheter Arterial Chemoembolization (TACE) Versus TACE Alone for Hepatocellular Carcinoma. J Evid Based Complementary Altern Med 2017; 22:883-891. [PMID: 29228810 PMCID: PMC5871311 DOI: 10.1177/2156587217730461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many studies have investigated the efficacy of Endostar combined with transcatheter arterial chemoembolization (TACE) versus TACE alone for hepatocellular carcinoma (HCC). A systematic review was conducted to evaluate the efficacy of Endostar. PubMed, Embase, and other databases were searched, and meta-analysis was performed using RevMan 5.3 software. Nine studies, all of which were clinical randomized controlled trials, involving 411 participants were included. The overall response rate, disease control rate and α-fetoprotein negative conversion ratio, and the 6- and 12-month survival rate of HCC patients treated with combined Endostar and TACE were higher than those treated with TACE alone ( P < .01). Furthermore, the incidence of tumor progression was low after Endostar treatment ( P = .005). The incidence of adverse effects (leukocytopenia, liver function damage, and vomiting) was similar in Endostar with TACE and in TACE alone ( P > .05). However, large studies and more randomized trials are necessary to determine the effects of Endostar on HCC.
Collapse
Affiliation(s)
- Ya-Qing Zhang
- 1 Northwest Minzu University, Lanzhou, People's Republic of China.,Ya-Qing Zhang and Fei Zhao contributed equally to this work
| | - Fei Zhao
- 1 Northwest Minzu University, Lanzhou, People's Republic of China.,2 Lanzhou University, Lanzhou, People's Republic of China.,Ya-Qing Zhang and Fei Zhao contributed equally to this work
| | - Lei Song
- 1 Northwest Minzu University, Lanzhou, People's Republic of China
| | - Hong-Yun Gan
- 1 Northwest Minzu University, Lanzhou, People's Republic of China
| | - Xiao-Feng Xie
- 1 Northwest Minzu University, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Mohajeri A, Sanaei S, Kiafar F, Fattahi A, Khalili M, Zarghami N. The Challenges of Recombinant Endostatin in Clinical Application: Focus on the Different Expression Systems and Molecular Bioengineering. Adv Pharm Bull 2017; 7:21-34. [PMID: 28507934 PMCID: PMC5426730 DOI: 10.15171/apb.2017.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis plays an essential role in rapid growing and metastasis of the tumors. Inhibition of angiogenesis is a putative strategy for cancer therapy. Endostatin (Es) is an attractive anti-angiogenesis protein with some clinical application challenges including; short half-life, instability in serum and requirement to high dosage. Therefore, production of recombinant endostatin (rEs) is necessary in large scale. The production of rEs is difficult because of its structural properties and is high-cost. Therefore, this review focused on the different expression systems that involved in rEs production including; mammalian, baculovirus, yeast, and Escherichia coli (E. coli) expression systems. The evaluating of the results of different expression systems declared that none of the mentioned systems can be considered to be generally superior to the other. Meanwhile with considering the advantages and disadvantage of E. coli expression system compared with other systems beside the molecular properties of Es, E. coli expression system can be a preferred expression system for expressing of the Es in large scale. Also, the molecular bioengineering and sustained release formulations that lead to improving of its stability and bioactivity will be discussed. Point mutation (P125A) of Es, addition of RGD moiety or an additional zinc biding site to N-terminal of Es , fusing of Es to anti-HER2 IgG or heavy-chain of IgG, and finally loading of the endostar by PLGA and PEG- PLGA nanoparticles and gold nano-shell particles are the effective bioengineering methods to overcome to clinical changes of endostatin.
Collapse
Affiliation(s)
- Abbas Mohajeri
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaei
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran
| | - Amir Fattahi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Department of Basic Science, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
6
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|
7
|
Ricard-Blum S, Salza R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol 2014; 23:457-63. [DOI: 10.1111/exd.12435] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| | - Romain Salza
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| |
Collapse
|
8
|
Foradori MJ, Chen Q, Fernandez CA, Harper J, Li X, Tsang PCW, Langer R, Moses MA. Matrilin-1 is an inhibitor of neovascularization. J Biol Chem 2014; 289:14301-9. [PMID: 24692560 DOI: 10.1074/jbc.m113.529982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the course of conducting a series of studies whose goal was to discover novel endogenous angiogenesis inhibitors, we have purified matrilin-1 (MATN-1) and have demonstrated, for the first time, that it inhibits neovascularization both in vitro and in vivo. Proteins were extracted from cartilage using a 2 m NaCl, 0.01 m HEPES buffer at 4 °C, followed by concentration of the extract. The concentrate was fractionated by size exclusion chromatography, and fractions were then screened for their ability to inhibit capillary endothelial cell (EC) proliferation in vitro. Fractions containing EC inhibitory activity were pooled and further purified by cation exchange chromatography. The resulting fractions from this step were then screened to isolate the antiangiogenic activity in vitro. This activity was identified by tandem mass spectrometry as being MATN-1. Human MATN-1 was cloned and expressed in Pichia pastoris and purified to homogeneity. Purified recombinant MATN-1, along with purified native protein, was shown to inhibit angiogenesis in vivo using the chick chorioallantoic membrane assay by the inhibition of capillary EC proliferation and migration. Finally, using a MATN-1-deficient mouse, we showed that angiogenesis during fracture healing was significantly higher in MATN-1(-/-) mice compared with the wild type mice as demonstrated by in vivo imaging and by elevated expression of angiogenesis markers including PECAM1, VEGFR, and VE-cadherin.
Collapse
Affiliation(s)
- Matthew J Foradori
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Qian Chen
- the Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - Cecilia A Fernandez
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Jay Harper
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115
| | - Xin Li
- the Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island 02903
| | - Paul C W Tsang
- the Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, and
| | - Robert Langer
- the Department of Biochemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marsha A Moses
- From the Program in Vascular Biology and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
9
|
Johannessen TCA, Wagner M, Straume O, Bjerkvig R, Eikesdal HP. Tumor vasculature: the Achilles' heel of cancer? Expert Opin Ther Targets 2012; 17:7-20. [DOI: 10.1517/14728222.2013.730522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
An evolutionary explanation for the perturbation of the dynamics of metastatic tumors induced by surgery and acute inflammation. Cancers (Basel) 2011; 3:945-70. [PMID: 24212648 PMCID: PMC3756398 DOI: 10.3390/cancers3010945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 12/22/2022] Open
Abstract
Surgery has contributed to unveil a tumor behavior that is difficult to reconcile with the models of tumorigenesis based on gradualism. The postsurgical patterns of progression include unexpected features such as distant interactions and variable rhythms. The underlying evidence can be summarized as follows: (1) the resection of the primary tumor is able to accelerate the evolution of micrometastasis in early stages, and (2) the outcome is transiently opposed in advanced tumors. The objective of this paper is to give some insight into tumorigenesis and surgery-related effects, by applying the concepts of the evolutionary theory in those tumor behaviors that gompertzian and tissular-centered models are unable to explain. According to this view, tumors are the consequence of natural selection operating at the somatic level, which is the basic mechanism of tumorigenesis, notwithstanding the complementary role of the intrinsic constrictions of complex networks. A tumor is a complicated phenomenon that entails growth, evolution and development simultaneously. So, an evo-devo perspective can explain how and why tumor subclones are able to translate competition from a metabolic level into neoangiogenesis and the immune response. The paper proposes that distant interactions are an extension of the ecological events at the local level. This notion explains the evolutionary basis for tumor dormancy, and warns against the teleological view of tumorigenesis as a process directed towards the maximization of a concrete trait such as aggressiveness.
Collapse
|