1
|
Notarte KI, Catahay JA, Macasaet R, Liu J, Velasco JV, Peligro PJ, Vallo J, Goldrich N, Lahoti L, Zhou J, Henry BM. Infusion reactions to adeno-associated virus (AAV)-based gene therapy: Mechanisms, diagnostics, treatment and review of the literature. J Med Virol 2023; 95:e29305. [PMID: 38116715 DOI: 10.1002/jmv.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The use of adeno-associated virus (AAV) vectors in gene therapy has demonstrated great potential in treating genetic disorders. However, infusion-associated reactions (IARs) pose a significant challenge to the safety and efficacy of AAV-based gene therapy. This review provides a comprehensive summary of the current understanding of IARs to AAV therapy, including their underlying mechanisms, clinical presentation, and treatment options. Toll-like receptor activation and subsequent production of pro-inflammatory cytokines are associated with IARs, stimulating neutralizing antibodies (Nabs) and T-cell responses that interfere with gene therapy. Risk factors for IARs include high titers of pre-existing Nabs, previous exposure to AAV, and specific comorbidities. Clinical presentation ranges from mild flu-like symptoms to severe anaphylaxis and can occur during or after AAV administration. There are no established guidelines for pre- and postadministration tests for AAV therapies, and routine laboratory requests are not standardized. Treatment options include corticosteroids, plasmapheresis, and supportive medications such as antihistamines and acetaminophen, but there is no consensus on the route of administration, dosage, and duration. This review highlights the inadequacy of current treatment regimens for IARs and the need for further research to improve the safety and efficacy of AAV-based gene therapy.
Collapse
Affiliation(s)
- Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jesus Alfonso Catahay
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Raymart Macasaet
- Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Jin Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jolaine Vallo
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | | | - Lokesh Lahoti
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brandon Michael Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Nito C, Suda S, Nitahara-Kasahara Y, Okada T, Kimura K. Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines 2022; 10:biomedicines10040737. [PMID: 35453487 PMCID: PMC9032844 DOI: 10.3390/biomedicines10040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine aims to restore human functions by regenerating organs and tissues using stem cells or living tissues for the treatment of organ and tissue defects or dysfunction. Clinical trials investigating the treatment of cerebral infarction using mesenchymal stem cells, a type of somatic stem cell therapy, are underway. The development and production of regenerative medicines using somatic stem cells is expected to contribute to the treatment of cerebral infarction, a central nervous system disease for which there is no effective treatment. Numerous experimental studies have shown that cellular therapy, including the use of human dental pulp stem cells, is an attractive strategy for patients with ischemic brain injury. This review describes the basic research, therapeutic mechanism, clinical trials, and future prospects for dental pulp stem cell therapy, which is being investigated in Japan in first-in-human clinical trials for the treatment of patients with acute cerebral ischemia.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
- Collaborative Research Center, Laboratory for Clinical Research, Nippon Medical School, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5814-6176
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| |
Collapse
|
3
|
Ishii A, Okada H, Hayashita-Kinoh H, Shin JH, Tamaoka A, Okada T, Takeda S. rAAV8 and rAAV9-Mediated Long-Term Muscle Transduction with Tacrolimus (FK506) in Non-Human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:44-49. [PMID: 32577431 PMCID: PMC7298335 DOI: 10.1016/j.omtm.2020.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
To establish an efficient, safe immunosuppressive regimen of adeno-associated vector (AAV)-mediated gene therapy for Duchenne muscular dystrophy (DMD), we evaluated the effect of tacrolimus (FK506) on skeletal muscle transduction with AAV8 and AAV9 vectors expressing the LacZ and microdystrophin (M3) genes labeled by FLAG. We utilized 3- to 4-year-old Macaca fascicularis, screened for neutralizing antibodies against AAV. 3 days before AAV injection and throughout the experiment, 0.06 mg/kg tacrolimus was intravenously administered. A viral suspension of 1 × 1013 viral genomes/muscle was intramuscularly injected bilaterally at the tibialis anterior and biceps brachii muscles, which were biopsied at 8, 16, 24, and 42 weeks after injection. Without tacrolimus, AAV8- and AAV9-mediated LacZ expression disappeared 8 and 16 weeks after transduction, respectively. With tacrolimus, AAV8/9-mediated LacZ expression persisted for at least 42 weeks after injection. At 42 weeks after AAV8CMVLacZ and AAV9CMVLacZ injection, nearly 50% and 17% of muscle fibers were positive for β-galactosidase, respectively. AAV8/9-mediated M3-FLAG expression lasted for up to 42 weeks using tacrolimus. No significant generalized toxicity was observed in any monkey. These results indicate that tacrolimus administration regulated the immune response to transgenes and truncated microdystrophin in normal primates and may enhance the benefits of AAV-mediated gene therapy for DMD.
Collapse
Affiliation(s)
- Akiko Ishii
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hironori Okada
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin-Hong Shin
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
4
|
Tsujimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Sci Rep 2019; 9:18869. [PMID: 31827180 PMCID: PMC6906518 DOI: 10.1038/s41598-019-55269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023] Open
Abstract
An important safety concern on cell-based gene therapy is that few methods have been available to control the proliferation and functioning of therapeutic protein-expressing cells after transplantation. We previously reported that the proliferation and functioning of the cells transfected with herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, can be controlled by administration of ganciclovir. In this study, we tried to control the amount of murine interferon-γ (IFN-γ) secreted from transplanted murine mesenchymal stem cell line C3H10T1/2 cells to achieve safe cell-based IFN-γ gene therapy for cancer. C3H10T1/2 cells were transfected with HSVtk- and murine IFN-γ-expressing plasmid vectors to obtain C3H10T1/2/HSVtk/IFN-γ cells. C3H10T1/2/HSVtk/IFN-γ cells released IFN-γ and were sensitive to ganciclovir. C3H10T1/2/HSVtk/IFN-γ cells significantly suppressed the proliferation of murine adenocarcinoma cell line colon26 cells both in vitro and in vivo. Moreover, subcutaneous administration of ganciclovir to mice transplanted with NanoLuc luciferase-expressing C3H10T1/2/HSVtk cells for three consecutive days reduced the luminescence signals from the transplanted cells. These results indicate that the cell regulation system using HSVtk gene and ganciclovir can be useful for safe and efficient cell-based IFN-γ gene therapy for cancer.
Collapse
Affiliation(s)
- Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
5
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
6
|
Sato M, Shiba N, Miyazaki D, Shiba Y, Echigoya Y, Yokota T, Takizawa H, Aoki Y, Takeda S, Nakamura A. Amelioration of intracellular Ca 2+ regulation by exon-45 skipping in Duchenne muscular dystrophy-induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 2019; 520:179-185. [PMID: 31585729 DOI: 10.1016/j.bbrc.2019.09.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by frameshift mutations in the DMD gene. DMD involves cardiac muscle, and the presence of ventricular arrhythmias or congestive failure is critical for prognosis. Several novel therapeutic approaches are being evaluated in ongoing clinical trials. Among them, exon-skipping therapy to correct frameshift mutations with antisense oligonucleotides is promising; however, their therapeutic efficacies on cardiac muscle in vivo remain unknown. In this study, we established induced-pluripotent stem cells (iPSCs) from T cells from a DMD patient carrying a DMD-exon 46-55 deletion, differentiated the iPSCs into cardiomyocytes, and treated them with phosphorodiamidate morpholino oligomers. The efficiency of exon-45 skipping increased in a dose-dependent manner and enabled restoration of the DMD gene product, dystrophin. Further, Ca2+-imaging analysis showed a decreased number of arrhythmic cells and improved transient Ca2+ signaling after exon skipping. Thus, exon-45 skipping may be effective for cardiac involvement in DMD patients harboring the DMD-exon 46-55 deletion.
Collapse
Affiliation(s)
- Mitsuto Sato
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Daigo Miyazaki
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan; Intractable Disease Care Center, Shinshu University Hospital, Matsumoto, Nagano, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Yusuke Echigoya
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Hotake Takizawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan; Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Murai-Machi Minami, Matsumoto, 399-8701, Japan.
| |
Collapse
|
7
|
Nakamura A. Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. J Pers Med 2019; 9:jpm9010016. [PMID: 30836656 PMCID: PMC6462977 DOI: 10.3390/jpm9010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscle disorders caused by mutations of the DMD gene, which encodes the subsarcolemmal protein dystrophin. In DMD, dystrophin is not expressed due to a disruption in the reading frame of the DMD gene, resulting in a severe phenotype. Becker muscular dystrophy exhibits a milder phenotype, having mutations that maintain the reading frame and allow for the production of truncated dystrophin. To date, various therapeutic approaches for DMD have been extensively developed. However, the pathomechanism is quite complex despite it being a single gene disorder, and dystrophin is expressed not only in a large amount of skeletal muscle but also in cardiac, vascular, intestinal smooth muscle, and nervous system tissue. Thus, the most appropriate therapy would be complementation or restoration of dystrophin expression, such as gene therapy using viral vectors, readthrough therapy, or exon skipping therapy. Among them, exon skipping therapy with antisense oligonucleotides can restore the reading frame and yield the conversion of a severe phenotype to one that is mild. In this paper, I present the significance of molecular diagnosis and the development of mutation-based therapeutic strategies to complement or restore dystrophin expression.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Murai-machi Minami, Matsumoto 399-8701, Japan.
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
8
|
Abstract
The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.
Collapse
|
9
|
Abstract
Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; ,
| | | |
Collapse
|
10
|
Ikeue R, Nakamura-Takahashi A, Nitahara-Kasahara Y, Watanabe A, Muramatsu T, Sato T, Okada T. Bone-Targeted Alkaline Phosphatase Treatment of Mandibular Bone and Teeth in Lethal Hypophosphatasia via an scAAV8 Vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:361-370. [PMID: 30202773 PMCID: PMC6129726 DOI: 10.1016/j.omtm.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Hypophosphatasia is an inherited disease caused by mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP), the major symptom of which is hypomineralization of the bones and teeth. We had recently demonstrated that TNALP-deficient (Akp2−/−) mice, which mimic the phenotype of the severe infantile form of hypophosphatasia, can be treated by intramuscular injection of a self-complementary (sc) type 8 recombinant adeno-associated virus (rAAV8) vector expressing bone-targeted TNALP with deca-aspartates at the C terminus (TNALP-D10) via the muscle creatine kinase (MCK) promoter. In this study, we focused on the efficacy of this scAAV8-MCK-TNALP-D10 treatment on the mandibular bone and teeth in neonatal Akp2−/− mice. Upon scAAV8-MCK-TNALP-D10 injection, an improvement of mandibular growth was observed by X-ray analysis. Micro-computed tomography analysis revealed progressive mineralization of the molar root in the treated Akp2−/− mice, and morphometric parameters of the alveolar bone were improved. These results suggest that the mandibular bones and teeth of hypophosphatasia were effectively treated by muscle directed rAAV-mediated TNALP-D10 transduction. Our strategy would be promising for future hypophosphatasia gene therapy because it induces dentoalveolar mineralization and reduces the risk of tooth exfoliation.
Collapse
Affiliation(s)
- Ryo Ikeue
- Department of Fixed Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Aki Nakamura-Takahashi
- Department of Pharmacology, Tokyo Dental College, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Takashi Muramatsu
- Department of Operative Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Toru Sato
- Department of Fixed Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current and emerging therapies for Duchenne muscular dystrophy (DMD). RECENT FINDINGS Coinciding with new standardized care guidelines, there are a growing number of therapeutic options to treat males with DMD. Treatment of the underlying pathobiology, such as micro-dystrophin gene replacement, exon skipping, stop codon read-through agents, and utrophin modulators showed variable success in animal and human studies. Symptomatic therapies to target muscle ischemia, enhance muscle regeneration, prevent muscle fibrosis, inhibit myostatin, and reduce inflammation are also under investigation. DMD is a complex, heterogeneous degenerative disease. The pharmacological and technological achievements made in recent years, plus timely supportive interventions will likely lead to an improved quality of life for many individuals with DMD.
Collapse
Affiliation(s)
- Megan Crone
- Division of Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. .,Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, Alberta, T3B 6A8, Canada.
| | - Jean K Mah
- Division of Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets. Recently approved therapies include ataluren for stop codon read-through and eteplirsen for exon 51 skipping of eligible individuals. The purpose of this chapter is to summarize the clinical features of DMD, to describe current outcome measures used in clinical studies, and to highlight new emerging therapies for affected individuals.
Collapse
|
13
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Abstract
Precision (P4) medicine represents a new medical paradigm that focuses on Personalized, Predictive, Preventive and Participatory approaches. The P4 paradigm is particularly appropriate for moving the care of persons with myopenia forward. Muscular dystrophies are clearly a set of genetically different diseases where genomics are the basis of diagnosis, and genetic modulation via DNA, oligonucleotides and clustered regularly interspaced short palendronic repeats hold great potential for a cure. The utility of personalized genomics for sarcopenia coupled with utilizing a predictive approach for the diagnosis with early preventive strategies is a key to improving sarcopenic outcomes. The importance of understanding different levels of patient enthusiasm and different responses to exercise should guide the participatory phase of sarcopenic treatment. In the case of cachexia, understanding the effects of the different therapies now available through the P4 approach on muscle wasting is a key to management strategies.
Collapse
Affiliation(s)
- John E. Morley
- Division of Geriatric MedicineSaint Louis University School of Medicine1402 S. Grand Blvd., M238St. LouisMO63104USA
| | - Stefan D. Anker
- Division of Innovative Clinical Trials, Department of Cardiology and PneumologyUniversity Medical Centre GöttingenRobert‐Koch‐Straße 40, D‐37075GöttingenGermany
| |
Collapse
|
15
|
Taguchi A, Hamada K, Shiozuka M, Kobayashi M, Murakami S, Takayama K, Taniguchi A, Usui T, Matsuda R, Hayashi Y. Structure-Activity Relationship Study of Leucyl-3- epi-deoxynegamycin for Potent Premature Termination Codon Readthrough. ACS Med Chem Lett 2017; 8:1060-1065. [PMID: 29057051 DOI: 10.1021/acsmedchemlett.7b00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 11/30/2022] Open
Abstract
(+)-Negamycin, isolated from Streptomyces purpeofuscus, shows antimicrobial activity against Gram-negative bacteria and readthrough activity against nonsense mutations. Previously, we reported that two natural negamycin analogues, 5-deoxy-3-epi-negamycin and its leucine adduct, have more potent readthrough activity in eukaryocytes (COS-7 cells) than negamycin but possess no antimicrobial activity and no in vitro readthrough activity in prokaryotic systems. In the present study, on leucyl-3-epi-deoxynegamycin, a structure-activity relationship study was performed to develop more potent readthrough agents. In a cell-based readthrough assay, the derivative 13b with an o-bromobenzyl ester functions as a prodrug and exhibits a higher readthrough activity against TGA-type PTC than the aminoglycoside G418. This ester (13b) shows an in vivo readthrough activity with low toxicity, suggesting that it has the potential for treatment of hereditary diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Masataka Shiozuka
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| | - Misaki Kobayashi
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Saori Murakami
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| | - Takeo Usui
- Faculty
of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Ryoichi Matsuda
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji,
Tokyo 192-0392, Japan
| |
Collapse
|
16
|
Taguchi A, Hamada K, Hayashi Y. Chemotherapeutics overcoming nonsense mutation-associated genetic diseases: medicinal chemistry of negamycin. J Antibiot (Tokyo) 2017; 71:205-214. [PMID: 28951602 DOI: 10.1038/ja.2017.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/15/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
Nonsense mutations caused by the presence of an in-frame premature termination codon (PTC) account for ~10% of gene lesions that together cause over 1800 inherited human diseases. One approach to treating genetic diseases that stem from PTCs is selective promotion of translational readthrough in a PTC using 'readthrough compounds' that can lead to partial restoration of full-length functional protein expression. (+)-Negamycin, a natural dipeptide-like antibiotic, may restore some dystrophin expression in the skeletal muscles of mice with Duchenne muscular dystrophy, and this compound has been recognized as a potential therapeutic agent for diseases caused by nonsense mutations. In an effort to develop new candidate molecules with improved activities, we established the efficient total synthesis in eight steps of (+)-negamycin using both achiral and chiral starting material. These routes provided a deamino derivative with in vivo readthrough activity with potential for long-term treatment. In a separate approach, we discovered two natural negamycin analogs, 3-epi-deoxynegamycin and its leucine derivative, which are potent readthrough compounds effective against nonsense mutations of eukaryotes but not prokaryotes. These compounds fail to display antimicrobial activity. More potent derivatives, whose structure is derived from 3-epi-deoxynegamycin, were identified and their chemistry is discussed in this review.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Keisuke Hamada
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
17
|
Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J Hum Genet 2017; 62:871-876. [DOI: 10.1038/jhg.2017.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/28/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023]
|
18
|
CRISPR/Cas9-mediated correction of human genetic disease. SCIENCE CHINA-LIFE SCIENCES 2017; 60:447-457. [DOI: 10.1007/s11427-017-9032-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/05/2017] [Indexed: 12/21/2022]
|
19
|
Reza M, Laval SH, Roos A, Carr S, Lochmüller H. Optimization of Internally Deleted Dystrophin Constructs. Hum Gene Ther Methods 2016; 27:174-186. [PMID: 27477497 DOI: 10.1089/hgtb.2016.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, genetic muscle disease caused by the absence of the sarcolemmal protein dystrophin. Gene replacement therapy is considered a potential strategy for the treatment of DMD, aiming to restore the missing protein. Although the elements of the dystrophin molecule have been identified and studies in transgenic mdx mice have explored the importance of a number of these structural domains, the resulting modified dystrophin protein products that have been developed so far are only partially characterized in relation to their structure and function in vivo. To optimize a dystrophin cDNA construct for therapeutic application we designed and produced four human minidystrophins within the packaging capacity of lentiviral vectors. Two novel minidystrophins retained the centrally located neuronal nitric oxide synthase (nNOS)-anchoring domain in order to achieve sarcolemmal nNOS restoration, which is lost in most internally deleted dystrophin constructs. Functionality of the resulting truncated dystrophin proteins was investigated in muscle of adult dystrophin-deficient mdx mice followed by a battery of detailed immunohistochemical and morphometric tests. This initial assessment aimed to determine the overall suitability of various constructs for cloning into lentiviral vectors for ex vivo gene delivery to stem cells for future preclinical studies.
Collapse
Affiliation(s)
- Mojgan Reza
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Steve H Laval
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Andreas Roos
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom .,2 Leibniz-Institut für Analytische Wissenschaften (ISAS) , Dortmund, Germany
| | - Stephanie Carr
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
|
21
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families.
Collapse
Affiliation(s)
- Jean K Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review. Mol Aspects Med 2016; 51:115-24. [PMID: 27421908 DOI: 10.1016/j.mam.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
α-Dystroglycanopathy, an autosomal recessive disease, is associated with the development of a variety of diseases, including muscular dystrophy. In humans, α-dystroglycanopathy includes various types of congenital muscular dystrophy such as Fukuyama type congenital muscular dystrophy (FCMD), muscle eye brain disease (MEB), and the Walker Warburg syndrome (WWS), and types of limb girdle muscular dystrophy 2I (LGMD2I). α-Dystroglycanopathy share a common etiology, since it is invariably caused by gene mutations that are associated with the O-mannose glycosylation pathway of α-dystroglycan (α-DG). α-DG is a central member of the dystrophin glycoprotein complex (DGC) family in peripheral membranes, and the proper glycosylation of α-DG is essential for it to bind to extracellular matrix proteins, such as laminin, to cell components. The disruption of this ligand-binding is thought to result in damage to cell membrane integration, leading to the development of muscular dystrophy. Clinical manifestations of α-dystroglycanopathy frequently include mild to severe alterations in the central nervous system and optical manifestations in addition to muscular dystrophy. Eighteen causative genes for α-dystroglycanopathy have been identified to date, and it is likely that more will be reported in the near future. These findings have stimulated extensive and energetic investigations in this research field, and novel glycosylation pathways have been implicated in the process. At the same time, the use of gene therapy, antisense therapy, and enzymatic supplementation have been evaluated as therapeutic possibilities for some types of α-dystroglycanopathy. Here we review the molecular and clinical findings associated with α-dystroglycanopathy and the development of therapeutic approaches, by comparing the approaches with the development of Duchenne muscular dystrophy.
Collapse
|
23
|
Nakamura-Takahashi A, Miyake K, Watanabe A, Hirai Y, Iijima O, Miyake N, Adachi K, Nitahara-Kasahara Y, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Shimada T, Okada T. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15059. [PMID: 26904710 PMCID: PMC4739158 DOI: 10.1038/mtm.2015.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 01/18/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2 (-/-) ) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2 (-/-) mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.
Collapse
Affiliation(s)
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan; Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Osamu Iijima
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | | | - Hideaki Kinoshita
- Department of Dental Materials Science, Tokyo Dental College , Tokyo, Japan
| | - Taku Noguchi
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Jose Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| |
Collapse
|
24
|
|
25
|
X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy. Pharmaceuticals (Basel) 2015; 8:303-20. [PMID: 26066469 PMCID: PMC4491663 DOI: 10.3390/ph8020303] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022] Open
Abstract
X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD) and sometimes present with dilated cardiomyopathy. The precise relationship between mutations in the DMD gene and cardiomyopathy remain unclear. However, some hypothetical mechanisms are being considered to be associated with the presence of some several dystrophin isoforms, certain reported mutations, and an unknown dystrophin-related pathophysiological mechanism. Recent therapy for Duchenne muscular dystrophy, the severe dystrophinopathy phenotype, appears promising, but the presence of XLDCM highlights the importance of focusing on cardiomyopathy while elucidating the pathomechanism and developing treatment.
Collapse
|
26
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
27
|
Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2014; 4:143-154. [PMID: 25434822 PMCID: PMC4297888 DOI: 10.1016/j.stemcr.2014.10.013] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. A unique k-mer database was used to identify unique targetable regions in human genome A dystrophin frameshift was corrected using TALENs or CRISPR-sgRNAs in iPSCs Genomic integrity tests identified minimum off-target mutagenesis by the nucleases Dystrophin protein was detected by myogenic differentiation in the corrected iPSCs
Collapse
Affiliation(s)
- Hongmei Lisa Li
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoko Fujimoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan
| | - Noriko Sasakawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Saya Shirai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tokiko Ohkame
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michihiro Tanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Amano
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Akitsu Hotta
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
| |
Collapse
|