1
|
Barros HL, Espadinha M, Pinto SN, Ferreira RJF, Loureiro JB, Silva R, Saraiva L, Maçôas E, Santos MMM. Tryptophanol-derived oxazoloisoindolinone fluorescent probes for cellular localization studies of p53 activators. Bioorg Chem 2024; 153:107898. [PMID: 39454498 DOI: 10.1016/j.bioorg.2024.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The protein p53 is a transcription factor with several key roles in cells, including acting as a tumour suppressor. In most human cancers its tumour suppressor function is inactivated, either through inhibition by negative regulators or by mutation in the TP53 gene. Thus, there is a high interest in developing molecules able to activate p53 tumour suppressor activity. Tryptophanol-derived isoindolinones are known to act as wild-type and mutant p53 activators. Specifically, SLMP53-1 is a non-fluorescent wild-type and mutant p53 R280K reactivator, with potent in vivo anti-tumour activity in HCT116 and MDA-MB-231 mice xenograft models. With the aim of studying tryptophanol-derived isoindolinones intracellular localization by fluorescence microscopy, three SLMP53-1 based fluorescent probes were prepared. Here we report the design, synthesis, photophysical characterization, antiproliferative activity and cell localization studies of these fluorescent probes. The previously described structure-activity relationships of the SLMP53-1 scaffold set the basis for the design the fluorescent probes. The probes were prepared by connecting a small fluorophore (dansyl or 7-nitrobenzofurazan) to the indole nitrogen of the tryptophanol-derived oxazoloisoindolinone SLMP53-1 through two different linkers. The antiproliferative activity and cell localization studies of the three fluorescent probes were performed in HCT116 cells. The three probes showed enhanced internalization when compared with their fluorophore-linker intermediates, good photo-stability and high affinity for the endoplasmic reticulum, indicating the potential involvement of endoplasmic reticulum in the mechanism of action of tryptophanol-derived oxazoloisoindolinones.
Collapse
Affiliation(s)
- Hélio L Barros
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Espadinha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sandra N Pinto
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory - Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ricardo J F Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural (CQE) and Institute of Molecular Sciences (IMS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Urlić I, Jovičić MŠ, Ostojić K, Ivković A. Cellular and Genetic Background of Osteosarcoma. Curr Issues Mol Biol 2023; 45:4344-4358. [PMID: 37232745 DOI: 10.3390/cimb45050276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcoma describes a tumor of mesenchymal origin with an annual incidence rate of four to five people per million. Even though chemotherapy treatment has shown success in non-metastatic osteosarcoma, metastatic disease still has a low survival rate of 20%. A targeted therapy approach is limited due to high heterogeneity of tumors, and different underlying mutations. In this review, we will summarize new advances obtained by new technologies, such as next generation sequencing and single-cell sequencing. These new techniques have enabled better assessment of cell populations within osteosarcoma, as well as an understanding of the molecular pathogenesis. We also discuss the presence and properties of osteosarcoma stem cells-the cell population within the tumor that is responsible for metastasis, recurrence, and drug resistance.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Šimić Jovičić
- Department of Paediatric Orthopaedics, Children's Hospital Zagreb, 10000 Zagreb, Croatia
| | - Karla Ostojić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Alan Ivković
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Professional Study in Physiotherapy, University of Applied Health Sciences, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
An Efficient One-pot Synthesis of Certain Stereoselective Spiro[pyrazole-4,5′-isoxazoline]-5-one Derivatives: In vitro Evaluation of Antitumor Activities, Molecular Docking and In silico ADME Predictions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Miles X, Vandevoorde C, Hunter A, Bolcaen J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front Oncol 2021; 11:703442. [PMID: 34307171 PMCID: PMC8296304 DOI: 10.3389/fonc.2021.703442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy, including the treatment of glioblastoma (GB). In response to cellular stressors, such as DNA damage, the tumor suppression protein p53 is activated and responds by mediating cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53 activation plays a central role in cell survival and the effectiveness of cancer therapies. Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is suggested as a treatment strategy, either by using targeted molecules to convert the mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB. Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation, either as monotherapy or in combination with chemotherapy and/or other targeted agents. In addition, considering the major role of both p53 and MDM2 in the downstream signaling response to radiation-induced DNA damage, the combination of MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition. Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB is given.
Collapse
Affiliation(s)
- Xanthene Miles
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Alistair Hunter
- Radiobiology Section, Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
5
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
6
|
Zanjirband M, Rahgozar S. Targeting p53-MDM2 Interaction Using Small Molecule Inhibitors and the Challenges Needed to be Addressed. Curr Drug Targets 2020; 20:1091-1111. [PMID: 30947669 DOI: 10.2174/1389450120666190402120701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| |
Collapse
|
7
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|
8
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
9
|
Prabhakaran P, Rajakumar P. Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through [3 + 2] cycloaddition of azomethine ylides. RSC Adv 2020; 10:10263-10276. [PMID: 35498613 PMCID: PMC9050375 DOI: 10.1039/c9ra10463a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a-i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a-i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a-i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.
Collapse
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| |
Collapse
|
10
|
Lopes EA, Gomes S, Saraiva L, Santos MM. Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Curr Med Chem 2020; 26:7323-7336. [DOI: 10.2174/0929867325666181116124308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
:
More than half of all human tumors express mutant forms of p53, with the ovary,
lung, pancreas, and colorectal cancers among the tumor types that display the highest prevalence
of p53 mutations. In addition, the expression of mutant forms of p53 in tumors is associated
with poor prognosis due to increased chemoresistance and invasiveness. Therefore, the
pharmacological restoration of wild-type-like activity to mutant p53 arises as a promising therapeutic
strategy against cancer. This review is focused on the most relevant mutant p53 small
molecule reactivators described to date. Despite some of them have entered into clinical trials,
none has reached the clinic, which emphasizes that new pharmacological alternatives, particularly
with higher selectivity and lower adverse toxic side effects, are still required.
Collapse
Affiliation(s)
- Elizabeth A. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Gomes
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria M.M. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Gębarowski T, Wiatrak B, Gębczak K, Tylińska B, Gąsiorowski K. Effect of new olivacine derivatives on p53 protein level. Pharmacol Rep 2020; 72:214-224. [PMID: 32016852 DOI: 10.1007/s43440-019-00004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The p53 protein is a transcription factor for many genes, including genes involved in inhibiting cell proliferation and inducing apoptosis in genotoxically damaged and tumor-transformed cells. In more than 55% of cases of human cancers, loss of the essential function of p53 protein is found. In numerous reports, it has been shown that small molecules (chemical compounds) can restore the suppressor function of the mutant p53 protein in tumor cells. The aim of this study was to evaluate the potential anticancer activity of three newly synthesized olivacine derivatives. METHODS The study was performed using two cell lines-CCRF/CEM (containing the mutant p53 protein) and A549 (containing a non-mutant, wild-type p53 protein). The cells were incubated with olivacine derivatives for 18 h and then assays were carried out: measurement of the amount of p53 and p21 proteins, detection of apoptosis, cell cycle analysis, and rhodamine 123 accumulation assay (evaluation of P-glycoprotein inhibition). Multiple-criteria decision analysis was used to compare the anticancer activity of the tested compounds. RESULTS Each tested compound caused the reconstitution of suppressor activity of the p53 protein in cells with the mutant protein. In addition, one of the compounds showed significant antitumor activity in both wild-type and mutant cells. For all compounds, a stronger effect on the level of the p53 protein was observed than for the reference compound-ellipticine. CONCLUSIONS The observed effects of the tested new olivacine derivatives (pyridocarbazoles) suggest that they are good candidates for new anticancer drugs.
Collapse
Affiliation(s)
- Tomasz Gębarowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland.
| | - Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, Wrocław, Poland
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| |
Collapse
|
12
|
Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein–protein interaction. J Comput Aided Mol Des 2019; 34:55-70. [DOI: 10.1007/s10822-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
13
|
Akaev AA, Bezzubov SI, Desyatkin VG, Vorobyeva NS, Majouga AG, Melnikov MY, Budynina EM. Stereocontrolled [3+2] Cycloaddition of Donor-Acceptor Cyclopropanes to Iminooxindoles: Access to Spiro[oxindole-3,2'-pyrrolidines]. J Org Chem 2019; 84:3340-3356. [PMID: 30735387 DOI: 10.1021/acs.joc.8b03208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel stereocontrolled assembly of spiro[oxindole-3,2'-pyrrolidines] via [3+2]-cycloaddition of donor-acceptor cyclopropanes to electron-poor ketimines, iminooxindoles, was developed. The method allows for efficient employment of common readily available donor-acceptor cyclopropanes, functionalized with ester, keto, nitro, cyano etc. groups, and N-unprotected iminooxindoles. The stereospecificity of the initial SN2-like imine attack on a cyclopropane molecule together with a high diastereoselectivity of further C-C bond formation facilitate a rapid access to spiro[oxindole-3,2'-pyrrolidines] in their optically active forms. Preliminary in vitro testing of the synthesized compounds against LNCaP (p53+) and PC-3 (p53-) cells revealed good antiproliferative activities and p53-selectivity indices for several compounds that are intriguing in terms of their further investigation as inhibitors of MDM2-p53 interaction.
Collapse
Affiliation(s)
- Andrey A Akaev
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskiy pr. 31 , Moscow 119991 , Russia
| | - Victor G Desyatkin
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Nataliya S Vorobyeva
- National University of Science and Technology "MISiS" , Leninskiy pr. 4 , Moscow 119991 , Russia
| | - Alexander G Majouga
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia.,National University of Science and Technology "MISiS" , Leninskiy pr. 4 , Moscow 119991 , Russia.,Dmitry Mendeleev University of Chemical Technology of Russia , Miusskaya sq. 9 , Moscow 125047 , Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| | - Ekaterina M Budynina
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| |
Collapse
|
14
|
Amaral JD, Silva D, Rodrigues CMP, Solá S, Santos MMM. A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation. Front Chem 2019; 7:15. [PMID: 30766866 PMCID: PMC6365904 DOI: 10.3389/fchem.2019.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Brain tumor, as any type of cancer, is assumed to be sustained by a small subpopulation of stem-like cells with distinctive properties that allow them to survive conventional therapies and drive tumor recurrence. Thus, the identification of new molecules capable of controlling stemness properties may be key in developing effective therapeutic strategies for cancer by inducing stem-like cells differentiation. Spiropyrazoline oxindoles have previously been shown to induce apoptosis and cell cycle arrest, as well as upregulate p53 steady-state levels, while decreasing its main inhibitor MDM2 in the HCT116 human colorectal carcinoma cell line. In this study, we made modifications in this scaffold by including combinations of different substituents in the pyrazoline ring in order to obtain novel small molecules that could modulate p53 activity and act as differentiation inducer agents. The antiproliferative activity of the synthesized compounds was assessed using the isogenic pair of HCT116 cell lines differing in the presence or absence of the p53 gene. Among the tested spirooxindoles, spiropyrazoline oxindole 1a was selective against the cancer cell line expressing wild-type p53 and presented low cytotoxicity. This small molecule induced neural stem cell (NSC) differentiation through reduced SOX2 (marker of multipotency) and increased βIII-tubulin (marker of neural differentiation) which suggests a great potential as a non-toxic inducer of cell differentiation. More importantly, in glioma cancer cells (GL-261), compound 1a reduced stemness, by decreasing SOX2 protein levels, while also promoting chemotherapy sensitization. These results highlight the potential of p53 modulators for brain cell differentiation, with spirooxindole 1a representing a promising lead molecule for the development of new brain antitumor drugs.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dário Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Guo J, Tang Q, Wang Q, Sun W, Pu Z, Wang J, Bao Y. Pifithrin-α enhancing anticancer effect of topotecan on p53-expressing cancer cells. Eur J Pharm Sci 2018; 128:61-72. [PMID: 30472223 DOI: 10.1016/j.ejps.2018.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
p53 is generally known as an effective anti-cancer molecular, but it is lost or mutated in more than 50% of human tumors. It is still a controversial issue whether the activity of p53 really benefits for treating cancers, we wondered what would happen if the endogenous p53 was inhibited before treated with topotecan (TPT) on p53 positive tumor cells. In this study, pifithrin-α (PFTα), a p53 inhibitor, was used 2 h before treated with TPT on three kinds of cancer cell lines including MCF7, BGC823 and HepG2 cells. The IC50s of TPT for MCF7, BGC823 and HepG2 cells after 10 μΜ PFTα pretreated, was 4.8 to 14.4 folds lower than the effect of TPT alone. It was demonstrated that PFTα decreases the p-p53 levels and p-p53 activity, not affects p53 expression in p53 positive tumor cells. PFTα enhanced anticancer effect of TPT on cells was found mainly by two ways. Firstly, it increased the TPT accumulation in cells and nucleus and promoted the inhibition of TPT on activity of Topo I, and induced more DNA damage. Secondly, PFTα decreased formation of p53/mdm2 complex responsible for p53 degradation by inhibiting the protein expression of mdm2, so p53 degradation was decreased in cytoplasm and p53 accumulation was increased in nucleus, which induced more cells undergo apoptosis. So, the crosstalk between p53 and TPT played a pivotal role for enhancing anticancer effects of PFTα and TPT on p53 positive cancer cells. These findings provide a new idea for drug design and combination chemotherapy of cancers.
Collapse
Affiliation(s)
- Jianli Guo
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Qin Tang
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingling Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Wenhui Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zhongji Pu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; School of Food and Environment Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
16
|
Tesson M, Vasan R, Hock A, Nixon C, Rae C, Gaze M, Mairs R. An evaluation in vitro of the efficacy of nutlin-3 and topotecan in combination with 177Lu-DOTATATE for the treatment of neuroblastoma. Oncotarget 2018; 9:29082-29096. [PMID: 30018737 PMCID: PMC6044389 DOI: 10.18632/oncotarget.25607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Targeted radiotherapy of metastatic neuroblastoma using the somatostatin receptor (SSTR)-targeted octreotide analogue DOTATATE radiolabelled with lutetium-177 (177Lu-DOTATATE) is a promising strategy. This study evaluates whether its effectiveness may be enhanced by combination with radiosensitising drugs. The growth rate of multicellular tumour spheroids, derived from the neuroblastoma cell lines SK-N-BE(2c), CHLA-15 and CHLA-20, was evaluated following treatment with 177Lu-DOTATATE, nutlin-3 and topotecan alone or in combination. Immunoblotting, immunostaining and flow cytometric analyses were used to determine activation of p53 signalling and cell death. Exposure to 177Lu-DOTATATE resulted in a significant growth delay in CHLA-15 and CHLA-20 spheroids, but not in SK-N-BE(2c) spheroids. Nutlin-3 enhanced the spheroid growth delay induced by topotecan in CHLA-15 and CHLA-20 spheroids, but not in SK-N-BE(2c) spheroids. Importantly, the combination of nutlin-3 with topotecan enhanced the spheroid growth delay induced by X-irradiation or by exposure to 177Lu-DOTATATE. The efficacy of the combination treatments was p53-dependent. These results indicate that targeted radiotherapy of high risk neuroblastoma with 177Lu-DOTATATE may be improved by combination with the radiosensitising drugs nutlin-3 and topotecan.
Collapse
Affiliation(s)
- Mathias Tesson
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Richa Vasan
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Andreas Hock
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Colin Rae
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Robert Mairs
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
17
|
da Silva Neto Trajano LA, Trajano ETL, da Silva Sergio LP, Teixeira AF, Mencalha AL, Stumbo AC, de Souza da Fonseca A. Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle. Lasers Med Sci 2018; 33:1513-1519. [DOI: 10.1007/s10103-018-2510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
|
18
|
Ribeiro CJ, Nunes RC, Amaral JD, Gonçalves LM, Rodrigues CM, Moreira R, Santos MM. Spirotriazoline oxindoles: A novel chemical scaffold with in vitro anticancer properties. Eur J Med Chem 2017; 140:494-509. [DOI: 10.1016/j.ejmech.2017.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
19
|
Proapoptotic modification of substituted isoindolinones as MDM2-p53 inhibitors. Bioorg Med Chem Lett 2017; 27:5197-5202. [PMID: 29089230 DOI: 10.1016/j.bmcl.2017.10.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
A series of novel amino acid ester derivatives of 2,3-substituted isoindolinones was synthesized and evaluated for p53-mediated apoptotic activity. The rationale for augmentation of the target activity of 2,3-substituted isoindolinones was based on the introduction of new fragments in the structure of the inhibitor that would provide additional binding sites in the hydrophobic cavity of MDM2. To select for the anticipated modifications we employed molecular docking. Synthesized molecules were evaluated for their ability to induce apoptosis in two cancer cell lines and their derivatives with different status of p53 (colorectal HCT116 and osteosarcoma U2OS cells) by Annexin V staining. The target activity was estimated using high-content imaging system Operetta. Valine and phenylglycine ester derivatives were identified as potentially active MDM2-p53 inhibitors.
Collapse
|
20
|
Zanjirband M, Curtin N, Edmondson RJ, Lunec J. Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget 2017; 8:69779-69796. [PMID: 29050241 PMCID: PMC5642516 DOI: 10.18632/oncotarget.19266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer worldwide for females and the most lethal of all gynecological malignancies. The treatment of ovarian cancer remains a challenge in spite of advances in debulking surgery and changes in both chemotherapy schedules and routes of administration. Cancer treatment has recently been improving with the introduction of targeted therapies to achieve greater specificity and less cytotoxicity. Both PARP inhibitors and MDM2-p53 binding antagonists are targeted therapeutic agents entered into clinical trials. This preclinical study evaluated the effect of Nutlin-3/RG7388 and rucaparib as single agents and in combination together in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3/RG7388 combination with rucaparib was additive to, or synergistic in a cell type-dependent manner. Mechanism studies showed rucaparib alone had no effect on p53 stabilization or activity. Although treatment with Nutlin-3 or RG7388 induced stabilization of p53 and upregulation of p21WAF1 and MDM2, the addition of rucaparib did not enhance the p53 activation seen with the MDM2 inhibitors alone. These results demonstrate that the synergistic effect on growth inhibition observed in the combination between rucaparib and Nutlin-3/RG7388 is not the result of increased p53 molecular pathway activation. Nevertheless, combined treatment of Nutlin-3/RG7388 with rucaparib increased cell cycle arrest and apoptosis, which was marked for A2780 and IGROV-1. These data indicate that combination treatment with MDM2 inhibitors and rucaparib has synergistic and dose reduction potential for the treatment of ovarian cancer, dependent on cell type.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Nicola Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Richard J. Edmondson
- Faculty Institute for Cancer Sciences, University of Manchester, Manchester M13 9WL, United Kingdom
| | - John Lunec
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
21
|
Nunes RC, Ribeiro CJA, Monteiro Â, Rodrigues CMP, Amaral JD, Santos MMM. In vitro targeting of colon cancer cells using spiropyrazoline oxindoles. Eur J Med Chem 2017; 139:168-179. [PMID: 28800455 DOI: 10.1016/j.ejmech.2017.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/23/2017] [Accepted: 07/23/2017] [Indexed: 02/07/2023]
Abstract
We report on the synthesis and biological evaluation of a library of twenty-three spiropyrazoline oxindoles. The antiproliferative activity of the chemical library was evaluated in HCT-116 p53(+/+) human colon cancer cell line with eight derivatives displaying good activities (IC50<15 μM). To characterize the molecular mechanisms involved in compound antitumoral activity, two spiropyrazoline oxindoles were selected for further studies. Both compounds were able to induce apoptosis and cell cycle arrest at G0/G1 phase and upregulated p53 steady-state levels, while decreasing its main inhibitor MDM2. Importantly, cytotoxic effects induced by spiropyrazolines oxindoles occurred in cancer cells without eliciting cell death in non-malignant CCD-18Co human colon fibroblasts. Additionally, we demonstrated that the combination of spiropyrazoline oxindole 2e with sub-toxic concentrations of the chemotherapeutic agent 5-fluorouracil (5-FU) exerted a synergistic inhibitory effect on HCT-116 colon cancer cell proliferation. Collectively, our results show the potential of spiropyrazoline oxindoles for development of novel anticancer agents.
Collapse
Affiliation(s)
- Rute C Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carlos J A Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ângelo Monteiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal. /
| |
Collapse
|
22
|
Akaev AA, Villemson EV, Vorobyeva NS, Majouga AG, Budynina EM, Melnikov MY. 3-(2-Azidoethyl)oxindoles: Advanced Building Blocks for One-Pot Assembly of Spiro[pyrrolidine-3,3′-oxindoles]. J Org Chem 2017; 82:5689-5701. [DOI: 10.1021/acs.joc.7b00529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrey A. Akaev
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia
| | - Elena V. Villemson
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia
| | - Nataliya S. Vorobyeva
- National University of Science and Technology “MISiS”, Leninskiy pr. 4, Moscow 119991, Russia
| | - Alexander G. Majouga
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia
- National University of Science and Technology “MISiS”, Leninskiy pr. 4, Moscow 119991, Russia
| | - Ekaterina M. Budynina
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia
| | - Mikhail Ya Melnikov
- Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
23
|
Friesen WJ, Trotta CR, Tomizawa Y, Zhuo J, Johnson B, Sierra J, Roy B, Weetall M, Hedrick J, Sheedy J, Takasugi J, Moon YC, Babu S, Baiazitov R, Leszyk JD, Davis TW, Colacino JM, Peltz SW, Welch EM. The nucleoside analog clitocine is a potent and efficacious readthrough agent. RNA (NEW YORK, N.Y.) 2017; 23:567-577. [PMID: 28096517 PMCID: PMC5340919 DOI: 10.1261/rna.060236.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 06/01/2023]
Abstract
Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations. We determined that incorporation of clitocine into RNA during transcription is a prerequisite for its readthrough activity; the presence of clitocine in the third position of a premature stop codon directly induces readthrough. We demonstrate that clitocine can induce the production of p53 protein in cells harboring p53 nonsense-mutated alleles. In these cells, clitocine restored production of full-length and functional p53 as evidenced by induced transcriptional activation of downstream p53 target genes, progression of cells into apoptosis, and impeded growth of nonsense-containing human ovarian cancer tumors in xenograft tumor models. Thus, clitocine induces readthrough of nonsense mutations by a previously undescribed mechanism and represents a novel therapeutic modality to treat cancers and genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
| | | | - Yuki Tomizawa
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jin Zhuo
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Briana Johnson
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jairo Sierra
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Bijoyita Roy
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jean Hedrick
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - James Takasugi
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Suresh Babu
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ramil Baiazitov
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | - Thomas W Davis
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| |
Collapse
|
24
|
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows. Methods Mol Biol 2017; 1647:221-236. [PMID: 28809006 DOI: 10.1007/978-1-4939-7201-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.
Collapse
|
25
|
Fierabracci A, Pellegrino M. The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Target. Int J Mol Sci 2016; 17:ijms17121975. [PMID: 27897991 PMCID: PMC5187775 DOI: 10.3390/ijms17121975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 01/22/2023] Open
Abstract
p53 is a sequence-specific short-lived transcription factor expressed at low concentrations in various tissues while it is upregulated in damaged, tumoral or inflamed tissue. In normally proliferating cells, p53 protein levels and function are tightly controlled by main regulators, i.e., MDM2 (mouse double minute 2) and MDM4 proteins. p53 plays an important role due to its ability to mediate tumor suppression. In addition to its importance as a tumor suppressor, p53 coordinates diverse cellular responses to stress and damage and plays an emerging role in various physiological processes, including fertility, cell metabolism, mitochondrial respiration, autophagy, cell adhesion, stem cell maintenance and development. Interestingly, it has been recently implicated in the suppression of autoimmune and inflammatory diseases in both mice and humans. In this review based on current knowledge on the functional properties of p53 and its regulatory pathways, we discuss the potential utility of p53 reactivation from a therapeutic perspective in oncology and chronic inflammatory disorders leading to autoimmunity.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| | - Marsha Pellegrino
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|