1
|
Shafiee-Kermani F, Carney ST, Jima D, Utin UC, Farrar LB, Oputa MO, Hines MR, Kinyamu HK, Trotter KW, Archer TK, Hoyo C, Koller BH, Freedland SJ, Grant DJ. Expression of UDP Glucuronosyltransferases 2B15 and 2B17 is associated with methylation status in prostate cancer cells. Epigenetics 2020; 16:289-299. [PMID: 32660355 DOI: 10.1080/15592294.2020.1795601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of UGT2B15, UGT2B17, de novo methyltransferases, DNMT3A and DNMT3B was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively. The results showed that EGF treatment decreased levels of expression of all four genes and that their expression was reversed by PD16893. Treatment with 5-azacytidine, markedly decreased expression of UGT2B15 and UGT2B17 over 85% as well as significantly decreased expression of DNMT3B, but not the expression of DNMT3A. DNMT3B siRNA treated LNCaP cells had decreased expression of UGT2B15 and UGT2B17, while DNMT3A siRNA treated cells had only moderately decreased UGT2B15 expression. Treatment with DNMT methyltransferase inhibitor, RG108, significantly decreased UGT2B17 expression. Additionally, methylation differences between prostate cancer samples and benign prostate samples from an Illumina 450K Methylation Array study were assessed. The results taken together suggest that hypomethylation of the UGT2B15 and UGT2B17 genes contributes to increased risk of prostate cancer and may provide a putative biomarker or epigenetic target for chemotherapeutics. Mechanistic studies are warranted to determine the role of the methylation marks in prostate cancer.
Collapse
Affiliation(s)
- Farideh Shafiee-Kermani
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Skyla T Carney
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Dereje Jima
- Bioinformatics Research Center, Ricks Hall, 1 Lampe Dr, North Carolina State University , Raleigh, NC, USA.,Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA
| | - Utibe C Utin
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - LaNeisha B Farrar
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Melvin O Oputa
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Marcono R Hines
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Kevin W Trotter
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Cathrine Hoyo
- Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA.,Epidemiology and Environmental Epigenomics Laboratory, Department of Biological Sciences, Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA
| | - Beverly H Koller
- Department of Genetics UNC School of Medicine, University of North Carolina at Chapel Hill , NC, USA
| | - Stephen J Freedland
- Cedars-Sinai Health System Center for Integrated Research on Cancer and Lifestyles , Cancer Genetics and Prevention Program, Surgery, Los Angeles, CA, USA
| | - Delores J Grant
- Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA.,Department of Biological and Biomedical Sciences, Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| |
Collapse
|
2
|
Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The Ontogeny of UDP-glucuronosyltransferase Enzymes, Recommendations for Future Profiling Studies and Application Through Physiologically Based Pharmacokinetic Modelling. Clin Pharmacokinet 2020; 58:189-211. [PMID: 29862468 DOI: 10.1007/s40262-018-0681-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Limited understanding of drug pharmacokinetics in children is one of the major challenges in paediatric drug development. This is most critical in neonates and infants owing to rapid changes in physiological functions, especially in the activity of drug-metabolising enzymes. Paediatric physiologically based pharmacokinetic models that integrate ontogeny functions for cytochrome P450 enzymes have aided our understanding of drug exposure in children, including those under the age of 2 years. Paediatric physiologically based pharmacokinetic models have consequently been recognised by the European Medicines Agency and the US Food and Drug Administration as innovative tools in paediatric drug development and regulatory decision making. However, little is currently known about age-related changes in UDP-glucuronosyltransferase-mediated metabolism, which represents the most important conjugation reaction for xenobiotics. Therefore, the objective of the review was to conduct a thorough literature survey to summarise our current understanding of age-related changes in UDP-glucuronosyltransferases as well as associated clinical and experimental sources of variance. Our findings indicate that there are distinct differences in UDP-glucuronosyltransferase expression and activity between isoforms for different age groups. In addition, there is substantial variability between individuals and laboratories reported for human liver microsomes, which results in part from a lack of standardised experimental conditions. Therefore, we provide a number of best practice recommendations for experimental conditions, which ultimately may help improve the quality of data used for quantitative clinical pharmacology approaches, and thus for safe and effective pharmacotherapy in children.
Collapse
Affiliation(s)
- Justine Badée
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
3
|
Rossnerova A, Honkova K, Pelclova D, Zdimal V, Hubacek JA, Chvojkova I, Vrbova K, Rossner P, Topinka J, Vlckova S, Fenclova Z, Lischkova L, Klusackova P, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Klema J, Dvorackova S. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int J Mol Sci 2020; 21:E2420. [PMID: 32244494 PMCID: PMC7177382 DOI: 10.3390/ijms21072420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jaroslav A. Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic;
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2 Liberec, Czech Republic;
| |
Collapse
|
4
|
Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J Pharmacol Sci 2019; 140:20-25. [PMID: 31105026 DOI: 10.1016/j.jphs.2019.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
Irinotecan (CPT-11) is a drug used against a wide variety of tumors, which can cause severe toxicity, possibly leading to the delay or suspension of the cycle, with the consequent impact on the prognosis of survival. The main goal of this work is to predict the toxicities derived from CPT-11 using artificial intelligence methods. The data for this study is conformed of 53 cycles of FOLFIRINOX, corresponding to patients with metastatic colorectal cancer. Supported by several demographic data, blood markers and pharmacokinetic parameters resulting from a non-compartmental pharmacokinetic study of CPT-11 and its metabolites (SN-38 and SN-38-G), we use machine learning techniques to predict high degrees of different toxicities (leukopenia, neutropenia and diarrhea) in new patients. We predict high degree of leukopenia with an accuracy of 76%, neutropenia with 75% and diarrhea with 91%. Among other variables, this study shows that the areas under the curve of CPT-11, SN-38 and SN-38-G play a relevant role in the prediction of the studied toxicities. The presented models allow to predict the degree of toxicity for each cycle of treatment according to the particularities of each patient.
Collapse
|
5
|
Davies NM, Wasan KM. Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape-A Summary of This Indispensable Special Issue. Pharmaceutics 2018; 10:pharmaceutics10010013. [PMID: 29337865 PMCID: PMC5874826 DOI: 10.3390/pharmaceutics10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Canadian Pharmaceutical Scientists have a rich history of groundbreaking research in pharmacokinetics and drug metabolism undertaken primarily throughout its Pharmacy Faculties and within the Pharmaceutical and Biotechnology industry.[...].
Collapse
Affiliation(s)
- Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|