1
|
Rahman M, Radgman K, Tarabokija J, Ahmad S, Bilgili E. Preparation and Characterization of Spray-Dried Hybrid Nanocrystal-Amorphous Solid Dispersions (HyNASDs) for Supersaturation Enhancement of a Slowly Crystallizing Drug. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2419. [PMID: 37686927 PMCID: PMC10490532 DOI: 10.3390/nano13172419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
We prepared hybrid nanocrystal-amorphous solid dispersions (HyNASDs) to examine their supersaturation capability in the release of a poorly soluble drug, itraconazole (ITZ), a slow crystallizer during dissolution. The HyNASD formulations included a polymer (HPC: hydroxypropyl cellulose, Sol: Soluplus, or VA64: Kollidon-VA64) and a surfactant (SDS: sodium dodecyl sulfate). Additionally, the dissolution performance of the HyNASDs and ASDs was compared. To this end, wet-milled aqueous nanosuspensions containing a 1:5 ITZ:polymer mass ratio with/without SDS as well as solutions of the same ratio without SDS in dichloromethane were spray-dried. XRPD-DSC confirmed that ASDs were formed upon spray drying the solution-based feeds, whereas HyNASDs (~5-30% amorphous) were formed with the nanosuspension-based feeds. SDS aided to stabilize the ITZ nanosuspensions and increase the amorphous content in the spray-dried powders. During dissolution, up to 850% and 790% relative supersaturation values were attained by HyNASDs with and without SDS, respectively. Due to the stronger molecular interaction between ITZ-Sol than ITZ-HPC/VA64 and micellar solubilization by Sol, Sol-based HyNASDs outperformed HPC/VA64-based HyNASDs. While the ASD formulations generated greater supersaturation values (≤1670%) than HyNASDs (≤790%), this extent of supersaturation from a largely nanocrystalline formulation (HyNASD) has not been achieved before. Overall, HyNASDs could boost drug release from nanoparticle-based formulations and may render them competitive to ASDs.
Collapse
Affiliation(s)
| | | | | | | | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.R.); (K.R.); (J.T.); (S.A.)
| |
Collapse
|
2
|
Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020363. [PMID: 36839685 PMCID: PMC9964073 DOI: 10.3390/pharmaceutics15020363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Celecoxib (CXB) is a Biopharmaceutical Classification System (BCS) Class II molecule with high permeability that is practically insoluble in water. Because of the poor water solubility, there is a wide range of absorption and limited bioavailability following oral administration. These unfavorable properties can be improved using dry co-milling technology, which is an industrial applicable technology. The purpose of this study was to develop and optimize CXB nanoformulations prepared by dry co-milling technology, with a quality by design approach to maintain enhanced solubility, dissolution rate, and oral bioavailability. The resulting co-milled CXB composition using povidone (PVP), mannitol (MAN) and sodium lauryl sulfate (SLS) showed the maximum solubility and dissolution rate in physiologically relevant media. Potential risk factors were determined with an Ishikawa diagram, important risk factors were selected with Plackett-Burman experimental design, and CXB compositions were optimized with Central Composite design (CCD) and Bayesian optimization (BO). Physical characterization, intrinsic dissolution rate, solubility, and stability experiments were used to evaluate the optimized co-milled CXB compositions. Dissolution and permeability studies were carried out for the resulting CXB nanoformulation. Oral pharmacokinetic studies of the CXB nanoformulation and reference product were performed in rats. The results of in vitro and in vivo studies show that the CXB nanoformulations have enhanced solubility (over 4.8-fold (8.6 ± 1.06 µg/mL vs. 1.8 ± 0.33 µg/mL) in water when compared with celecoxib pure powder), and dissolution rate (at least 85% of celecoxib is dissolved in 20 min), and improved oral pharmacokinetic profile (the relative bioavailability was 145.2%, compared to that of Celebrex®, and faster tmax 3.80 ± 2.28 h vs. 6.00 ± 3.67 h, indicating a more rapid absorption rate).
Collapse
|
3
|
Rampedi PN, Ogunrombi MO, Wesley-Smith J, Adeleke OA. A Micro-Configured Multiparticulate Reconstitutable Suspension Powder of Fixed Dose Rifampicin and Pyrazinamide: Optimal Fabrication and In Vitro Quality Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010064. [PMID: 36678693 PMCID: PMC9861895 DOI: 10.3390/pharmaceutics15010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The scarcity of age-appropriate pharmaceutical formulations is one of the major challenges impeding successful management of tuberculosis (TB) prevalence in minors. To this end, we designed and assessed the quality of a multiparticulate reconstitutable suspension powder containing fixed dose rifampicin and pyrazinamide (150 mg/300 mg per 5 mL) which was prepared employing solid−liquid direct dispersion coupled with timed dehydration, and mechanical pulverization. The optimized formulation had a high production yield (96.000 ± 3.270%), displayed noteworthy powder flow quality (9.670 ± 1.150°), upon reconstitution the suspension flow property was non-Newtonian and was easily redispersible with gentle manual agitation (1.720 ± 0.011 strokes/second). Effective drug loading was attained for both pyrazinamide (97.230 ± 2.570%w/w) and rifampicin (97.610 ± 0.020%w/w) and drug release followed a zero-order kinetic model (R2 = 0.990) for both drugs. Microscopic examinations confirmed drug encapsulation efficiency and showed that the particulates were micro-dimensional in nature (n < 700.000 µm). The formulation was physicochemically stable with no chemically irreversible drug-excipient interactions based on the results of characterization experiments performed. Findings from organoleptic evaluations generated an overall rating of 4.000 ± 0.000 for its attractive appearance and colour 5.000 ± 0.000 confirming its excellent taste and extremely pleasant smell. Preliminary cytotoxicity studies showed a cell viability above 70.000% which indicates that the FDC formulation was biocompatible. The optimized formulation was environmentally stable either as a dry powder or reconstituted suspension. Accordingly, a stable and palatable FDC antimycobacterial reconstitutable oral suspension powder, intended for flexible dosing in children and adolescents, was optimally fabricated.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - James Wesley-Smith
- Electron Microscope Unit, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Oluwatoyin A. Adeleke
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: or
| |
Collapse
|
4
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Therapeutic effects of celecoxib polymeric systems in rat models of inflammation and adjuvant-induced rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111042. [DOI: 10.1016/j.msec.2020.111042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
|
7
|
Employment of Alginate Floating In Situ Gel for Controlled Delivery of Celecoxib: Solubilization and Formulation Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1879125. [PMID: 32596281 PMCID: PMC7296469 DOI: 10.1155/2020/1879125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
Abstract
Celecoxib (CXB) is a COX-2-selective nonsteroidal anti-inflammatory drug used to control pain and various inflammatory conditions. CXB has limited oral bioavailability and a slow dissociation rate due to its poor water solubility. In order to enhance the oral bioavailability of CXB and reduce the frequency of administration, the present study was aimed at enhancing the aqueous solubility of CXB by a cosolvency technique and then at formulating and evaluating a CXB in situ floating gelling system for sustained oral delivery. Three cosolvents, namely, PEG 600, propylene glycol, and glycerin, at different concentrations, were used to solubilize CXB. Particle size analysis was performed to confirm the solubility of CXB in the solutions. The floating in situ gel formulations were then prepared by the incorporation of the CXB solution into sodium alginate solutions (0.25, 0.5, and 1% w/v). Formulations, in sol form, were then in vitro characterized for their physical appearance, pH, and rheological behaviors, while formulations in gel form were evaluated for their floating behavior and in vitro drug release studies. FTIR spectroscopy was performed to examine drug-polymer interaction. The selected formula was evaluated biologically for its anti-inflammatory and analgesic activities. Results revealed that the less-polar solvent PEG 600 at 80% v/v had the highest solubilization potential, and it was used to optimize the in situ gel formulation. The candidate formula (F3) was found to have the highest sodium alginate concentration (1% w/v) and showed the optimum sustained release profile with the Higuchi model release kinetics. The results from the FTIR spectroscopy analysis showed noticeable drug-polymer molecular interaction. Moreover, F3 exhibited a significantly higher percentage of paw edema inhibition at 8 h compared with the reference drug (p < 0.05). Also, it showed a sustained duration of analgesia that persisted for the entire experimental time.
Collapse
|
8
|
Yakushiji K, Sato H, Ogino M, Suzuki H, Seto Y, Onoue S. Self-Emulsifying Drug Delivery System of Celecoxib for Avoiding Delayed Oral Absorption in Rats with Impaired Gastric Motility. AAPS PharmSciTech 2020; 21:135. [PMID: 32419073 DOI: 10.1208/s12249-020-01686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a self-emulsifying drug delivery system (SEDDS) of celecoxib (CEL) for suppressed delay in oral absorption under impaired gastric motility. A pseudo-ternary phase diagram was constructed for the determination of the optimal component ratio in SEDDS of CEL (SEDDS/CEL), and the SEDDS/CEL was physicochemically characterized. A pharmacokinetic study on orally dosed CEL samples (5-mg CEL/kg) was carried out in normal and propantheline (PPT)-treated rats to mimic impaired gastric motility. SEDDS/CEL rapidly formed a fine emulsion with a mean size of 147 nm in distilled water and significantly improved the dissolution behavior of CEL under pH 1.2 condition with a 20-fold higher dissolved amount than crystalline CEL. In normal rats, orally dosed SEDDS/CEL provided a 4.6-fold higher systemic exposure than that of crystalline CEL, due to the improved dissolution properties of CEL. Crystalline CEL showed delayed and decreased oral absorption of CEL in PPT-treated rats as evidenced by a 6.9-h-delayed mean absorption time and only 12% of the systemic exposure of CEL compared with those in normal rats. In contrast, SEDDS/CEL enhanced the oral absorption of CEL with a 14.6-fold higher systemic exposure with significant suppression of delay in absorption than crystalline CEL even in PPT-treated rats. SEDDS/CEL could be an efficacious option for suppressing delay in CEL absorption even under impairment of gastric motility, possibly leading to rapid and reproducible management of severe acute pain.
Collapse
|
9
|
Liu Q, Mai Y, Gu X, Zhao Y, Di X, Ma X, Yang J. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Bartos C, Ambrus R, Katona G, Sovány T, Gáspár R, Márki Á, Ducza E, Ivanov A, Tömösi F, Janáky T, Szabó-Révész P. Transformation of Meloxicam Containing Nanosuspension into Surfactant-Free Solid Compositions to Increase the Product Stability and Drug Bioavailability for Rapid Analgesia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4007-4020. [PMID: 31819372 PMCID: PMC6886534 DOI: 10.2147/dddt.s220876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Purpose The aim of this work was to study the influence of solidification of meloxicam (Mel) containing nanosuspension (nanoMel) on the physical stability and drug bioavailability of the products. The nanoMel sample had poly(vinyl alcohol) (PVA) as a protective polymer, but no surfactant as a further stabilizing agent because the final aim was to produce surfactant-free solid phase products as well. Methods The solidified samples produced by fluidization and lyophilization (fluidMel, lyoMel) were examined for particle size, crystallinity, and in vitro release of Mel compared to similar parameters of nanoMel. The products were subjected to an animal experiment using per oral administration to verify their bioavailability. Results Mel containing (1%) nanoMel sample was produced by wet milling process using an optimized amount of PVA (0.5%) which resulted in 130 nm as mean particle size and a significant reduction in the degree of crystallinity (13.43%) of Mel. The fluidization technique using microcrystalline cellulose (MCC) as carrier resulted in a quick conversion and no significant change in the critical product parameters. The process of lyophilization required a longer operation time, which resulted in the amorphization of the crystalline carrier (trehalose) and the recrystallization of Mel increased its particle size and crystallinity. The fluidMel and lyoMel samples had nearly five-fold higher relative bioavailability than nanoMel application by oral administration. The correlation between in vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of solid carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals rapidly reached saturation concentration leading to faster dissolution and rapid absorption. Conclusion The solidification of the nanosuspension not only increased the stability of the Mel nanoparticles but also allowed the preparation of surfactant-free compositions with excellent bioavailability which may be an important consideration for certain groups of patients to achieve rapid analgesia.
Collapse
Affiliation(s)
- Csaba Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Tamás Sovány
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Árpád Márki
- Faculty of Medicine, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Ivanov
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Saxena P, Sharma PK, Purohit P. A journey of celecoxib from pain to cancer. Prostaglandins Other Lipid Mediat 2019; 147:106379. [PMID: 31726219 DOI: 10.1016/j.prostaglandins.2019.106379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/30/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
The most enthralling and versatile class of drugs called the Non-steroidal anti-inflammatory (NSAIDs) showed its therapeutic utility in inflammation, beginning from the era of classic drug 'Aspirin'. NSAIDs and their well-established action based on inhibiting the COX-1 and COX-2 enzyme leads to blockage of prostaglandin pathway. They further categorized into first generation (non-selective inhibitor) and second generation (selective COX-2 inhibitors). Selective COX-2 inhibitors has advantage over non-selective in terms of their improved safety profile of gastro-intestinal tract. Rejuvenating and recent avenues for COXIBS (selective COX-2 inhibitors) explains its integrated role in identification of biochemical pain signaling as well as its pivotal key role in cancer chemotherapy. A key role player in this class is the Celecoxib (only FDA approved COXIB) a member of Biopharmaceutical classification system (BCS) II. Low solubility and bioavailability issues related with celecoxib lead to the development and advancement in the discovery and research of some possible formulation administered either orally, topically or via transdermal route. This review article intent to draw the bead on Celecoxib and it clearly explain extensive knowledge of its disposition profile, its dynamic role in cancer at cellular level and cardiovascular risk assessment. Some of the possible formulations approaches with celecoxib and its improvement aspects are also briefly discussed.
Collapse
Affiliation(s)
- Pratiksha Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India.
| | - Pramod K Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| | - Priyank Purohit
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| |
Collapse
|
12
|
The Effects of Vinegar Processing on the Changes in the Physical Properties of Frankincense Related to the Absorption of the Main Boswellic Acids. Molecules 2019; 24:molecules24193453. [PMID: 31547594 PMCID: PMC6804284 DOI: 10.3390/molecules24193453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/21/2022] Open
Abstract
Boswellic acids (BAs), as the main components of frankincense, exhibit notable anti-inflammatory properties. However, their pharmaceutical development has been severely limited by their poor oral bioavailability. Traditional Chinese medicinal processing, called Pao Zhi, is believed to improve bioavailability, yet the mechanism is still completely unclear. Previous research suggested that the bioavailability of a drug can be influenced by physical properties. This paper was designed to investigate the physical properties of frankincense and processed frankincense, including the surface morphology, particle size, polydispersity index (PDI), zeta potential (ZP), specific surface area, porosity, and viscosity. The differences in the intestinal absorption characteristics and equilibrium solubilities between frankincense and processed frankincense were determined by an ultra-high-performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UHPLC-TQ-MS) analysis method. The results showed that vinegar processing can alter the surface morphology, decrease the particle size and PDI, raise the absolute values of the ZP, specific surface area and porosity, and drop the viscosity of frankincense. Meanwhile, the rates of absorption and dissolution of the main BAs were increased after the processing of frankincense. The present study proves that the physical properties were changed after processing, in which case the bioavailability of frankincense was enhanced.
Collapse
|
13
|
Development and Evaluation of Poorly Water-Soluble Celecoxib as Solid Dispersions Containing Nonionic Surfactants Using Fluidized-Bed Granulation. Pharmaceutics 2019; 11:pharmaceutics11030136. [PMID: 30897776 PMCID: PMC6471285 DOI: 10.3390/pharmaceutics11030136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to develop a solid dispersion system with improved dissolution, absorption, and patient compliance of poorly water-soluble celecoxib (CXB). Instead of sodium lauryl sulfate (SLS), an anionic surfactant used in the marketed product (Celebrex®), solubilization was performed using non-ionic surfactants with low toxicity. Cremophor RH40 (Cre-RH) was selected as the optimal solubilizer. Granules and tablets containing CXB and Cre-RH were prepared via fluid-bed and tableting processes, respectively. The morphology, crystallinity, flowability, dissolution, and pharmacokinetics for CXB-solid dispersion granules (SDGs) and the hardness and friability for CXB-solid dispersion tablets (SDTs) were evaluated. The solubility of CXB was found to be increased by about 717-fold when using Cre-RH. The dissolution of granules containing Cre-RH was found to be increased greatly compared with CXB API and Celebrex® (66.9% versus 2.3% and 37.2% at 120 min). The improvement of the dissolution was confirmed to be the same as that of granules in tablets. The CXB formulation resulted in 4.6- and 4.9-fold higher AUCinf and Cmax of CXB compared with those of an oral dose of CXB powder in rats. In short, these data suggest that the solid dispersion based on Cre-RH—a non-toxic solubilizer, non-ionic surfactant— may be an effective formulation for CXB to enhance its oral bioavailability and safety.
Collapse
|