1
|
Sivadasan D, Madkhali OA. The Design Features, Quality by Design Approach, Characterization, Therapeutic Applications, and Clinical Considerations of Transdermal Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1346. [PMID: 39458987 PMCID: PMC11510585 DOI: 10.3390/ph17101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Transdermal drug delivery systems (TDDSs) are designed to administer a consistent and effective dose of an active pharmaceutical ingredient (API) through the patient's skin. These pharmaceutical preparations are self-contained, discrete dosage forms designed to be placed topically on intact skin to release the active component at a controlled rate by penetrating the skin barriers. The API provides the continuous and prolonged administration of a substance at a consistent rate. TDDSs, or transdermal drug delivery systems, have gained significant attention as a non-invasive method of administering APIs to vulnerable patient populations, such as pediatric and geriatric patients. This approach is considered easy to administer and helps overcome the bioavailability issues associated with conventional drug delivery, which can be hindered by poor absorption and metabolism. A TDDS has various advantages compared to conventional methods of drug administration. It is less intrusive, more patient-friendly, and can circumvent first pass metabolism, as well as the corrosive acidic environment of the stomach, that happens when drugs are taken orally. Various approaches have been developed to enhance the transdermal permeability of different medicinal compounds. Recent improvements in TDDSs have enabled the accurate administration of APIs to their target sites by enhancing their penetration through the stratum corneum (SC), hence boosting the bioavailability of drugs throughout the body. Popular physical penetration augmentation methods covered in this review article include thermophoresis, iontophoresis, magnetophoresis, sonophoresis, needle-free injections, and microneedles. This review seeks to provide a concise overview of several methods employed in the production of TDDSs, as well as their evaluation, therapeutic uses, clinical considerations, and the current advancements intended to enhance the transdermal administration of drugs. These advancements have resulted in the development of intelligent, biodegradable, and highly efficient TDDSs.
Collapse
Affiliation(s)
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
2
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
4
|
Zhang XR, Jin YX, Chien PN, Tien TTT, Zhou SY, Giang NN, Le LTT, Nam SY, Heo CY. Evaluation test and analysis of a microneedle and iontophoresis based medical device "CELLADEEP Patch" in skin improvement on ex vivo human-derived skin tissue models. Skin Res Technol 2024; 30:eSRT13784. [PMID: 39031931 PMCID: PMC11259541 DOI: 10.1111/srt.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1β) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.
Collapse
Affiliation(s)
- Xin Rui Zhang
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yong Xun Jin
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Trinh Thi Thuy Tien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Biomedical ScienceCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudySeongnamSouth Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive SurgeryCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
5
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Abbasi M, Fan Z, Dawson JA, Wang S. Anti-obesity and metabolic benefits of metformin: Comparison of different delivery routes. J Drug Deliv Sci Technol 2024; 91:105110. [PMID: 38188941 PMCID: PMC10768944 DOI: 10.1016/j.jddst.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Obesity is a severe public health problem. Healthy lifestyle interventions are commonly recommended for fighting obesity. But they are hard to follow and have low efficacy. Pharmacotherapy and surgery are of high efficacy but are beset with side effects. Browning subcutaneous white adipose tissue (WAT) is a practical and efficient approach for combating obesity. Metformin, a commonly used FDA-approved antidiabetic drug, is potent to induce browning of WAT through phosphorylation and activation of AMP-activated protein kinase. However, oral administration of metformin has low oral bioavailability, fast renal clearance, and low target specificity that limit metformin's application in browning WAT. Local and transdermal delivery of metformin directly to subcutaneous WAT using injection or microneedle (MN) in combination with iontophoresis (INT) may solve these problems. In this paper, we administered metformin to C57BL/6J obese mice using the following three routes: transdermal delivery (MN and INT), local injection into inguinal WAT (IgWAT, a type of subcutaneous WAT in mice), and oral gavage. The anti-obesity and metabolic effects of metformin via these delivery routes were determined and compared. As compared to local IgWAT injection and oral gavage delivery, transdermal delivery of metformin using MN and INT resulted in 9% lower body weight and 7% decrease in body fat% accompanied by improved energy metabolism and decreased inflammation through browning IgWAT in obese C57BL/6J mice. Transdermal delivery of metformin using MN and INT is an effective approach in browning subcutaneous WAT for combating obesity and improving metabolic health.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Human Sciences, Auburn University, Auburn, AL, 36830, USA
| | - Zhaoyang Fan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - John A. Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Economics, Applied Statistics, and International, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, 85004, USA
| |
Collapse
|
7
|
Wei D, Pu N, Li SY, Wang YG, Tao Y. Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Deliv 2023; 30:2165736. [PMID: 36628545 PMCID: PMC9851230 DOI: 10.1080/10717544.2023.2165736] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Delivery of drugs to special locations of ocular lesions, while minimizing systemic and local toxic effects, is recognized as a critical challenge in the ophthalmic practice. The special anatomy and physiology barriers within the eyeball entail effective drug delivery systems. Emerging attempts in drug delivery has led to developments in ocular iontophoresis, which acts as a noninvasive technology to enhance drug penetration using a small electric current. This technique offers greater flexibility to deliver desired drug dose in a controlled and tolerable manner. In previous studies, this technique has been testified to deliver antibiotics, corticoid, proteins and other gene drugs into the eye with the potency of treating or alleviating diverse ophthalmological diseases including uveitis, cataract, retinoblastoma, herpes simplex and cytomegalovirus retinitis (CMVR), etc. In this review, we will introduce the recent developments in iontophoresis device. We also summarize the latest progress in coulomb controlled iontophoresis (CCI), hydrogel ionic circuit (HIC) and EyeGate II delivery system (EGDS), as well as overview the potential toxicity of iontophoresis. We will discuss these factors that affect the efficacy of iontophoresis experiments, and focus on the latest progress in its clinical application in the treatment of eye diseases.
Collapse
Affiliation(s)
- Dong Wei
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ning Pu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Si-Yu Li
- College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Yan-Ge Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,CONTACT Yan-Ge Wang
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou, China,Ye Tao Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou450003, China
| |
Collapse
|
8
|
Alghanem S, Dziurkowska E, Ordyniec-Kwaśnica I, Sznitowska M. Intraoral medical devices for sustained drug delivery. Clin Oral Investig 2023; 27:7157-7169. [PMID: 37982874 PMCID: PMC10713785 DOI: 10.1007/s00784-023-05377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES The oral cavity constitutes an attractive organ for the local and systemic application of drug substances. Oromucosal tablets, gels, or sprays are examples of the formulations applied. Due to the elution through the saliva, the residence time of the formulation at the application site is relatively short. Medical devices placed in the oral cavity, with a reservoir for an active substance, play an important role in solving this problem. MATERIALS AND METHODS In this review, we discuss the devices described in the literature that are designed to be used in the oral cavity, highlighting the advantages, disadvantages, and clinical applications of each of them. RESULTS Among the intraoral medical devices, special types are personalized 3D-printed devices, iontophoretic devices, and microneedle patches. CONCLUSION We anticipate that with the development of 3D printing and new polymers, the technology of flexible and comfortable devices for prolonged drug delivery in the oral cavity will develop intensively. CLINICAL RELEVANCE The presented review is therefore a useful summary of the current technological state, when in fact none of the existing devices has been widely accepted clinically.
Collapse
Affiliation(s)
- Suhail Alghanem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Ewelina Dziurkowska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland.
| | - Iwona Ordyniec-Kwaśnica
- Department of Dental Prosthetics, Faculty of Medicine, Medical University of Gdansk, Str. E. Orzeszkowej 18, 80-208, Gdansk, Poland
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| |
Collapse
|
9
|
Mistry H, Fernandes S, Haq MA, Bafna Y, Bhatt R, Sinha S, Gajjar S, Kumar S, Haque M. Iontophoresis-Infused Deep Topical Anesthesia and Injectable Local Anesthesia for Dental Procedures Among Pediatric Patients: Performances and Consequences. Cureus 2023; 15:e43748. [PMID: 37600432 PMCID: PMC10439667 DOI: 10.7759/cureus.43748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION Exploring routes of needle-free anesthesia has drawn particular attention to the iontophoretic technique. Iontophoresis has a wide range of applications in dentistry, treating hypersensitivity, oral ulcers, non-invasive procedures of deep topical anesthesia, etc. Hence, this research was performed for a comparative assessment of topical anesthesia spray infused via iontophoresis and local anesthesia (LA) infiltration for dental procedures among 5-12-year-old patients. MATERIALS AND METHODS A split-mouth, randomized clinical trial was undertaken over two years among study subjects aged 5 to 12 years. They were randomly assigned to one of two groups: the first (Group A - iontophoresis group) received topical anesthesia spray (Lidayn®; Pyrax Polymers, Roorkee, India) applied by iontophoresis, and the second (Group B - LA infiltration group) received local infiltration of 2% lignocaine solution (LignoTer®; Lusture Pharma, Ahmedabad, India), where primary teeth extraction or pulpectomy was performed. The Wong-Baker Facial Pain Rating Scale (WBFPRS) was used for a subjective assessment immediately following anesthesia. RESULTS The mean value of current intensity for the extraction procedure was 9.43±0.95 mA, and the duration of application was 1.85±0.80 minutes. The mean value of current intensity for pulpectomy was 9.07±1.34 mA, and the time was 2.40±0.74 minutes. In inter-group comparison, WBFPRS scores were lower in Group A (1.96±1.64) compared to Group B (3.62±1.11), which was statistically significant with p=0.001. CONCLUSION Compared to local infiltration, iontophoresis as a non-invasive approach for topical anesthesia was more well-received by pediatric patients.
Collapse
Affiliation(s)
- Harsh Mistry
- Pediatric and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shobha Fernandes
- Pediatric and Preventive Dentistry, Narsinhbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, BGD
| | - Yash Bafna
- Pediatric and Preventive Dentistry, Narsinhbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Rohan Bhatt
- Pediatric Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Shreya Gajjar
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
10
|
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:1844. [PMID: 37514031 PMCID: PMC10385385 DOI: 10.3390/pharmaceutics15071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, with surgery, radiotherapy, chemotherapy, and immunotherapy being the primary treatment modalities. The treatment for HNSCC has evolved over time, due to which the prognosis has improved drastically. Despite the varied treatment options, major challenges persist. HNSCC chemotherapeutic and immunotherapeutic drugs are usually administered systemically, which could affect the patient's quality of life due to the associated side effects. Moreover, the systemic administration of salivary stimulating agents for the treatment of radiation-induced xerostomia is associated with toxicities. Localized drug delivery systems (LDDS) are gaining importance, as they have the potential to provide non-invasive, patient-friendly alternatives to cancer therapy with reduced dose-limiting toxicities. LDDSs involve directly delivering a drug to the tissue or organ affected by the disease. Some of the common localized routes of administration include the transdermal and transmucosal drug delivery system (DDSs). This review will attempt to explore the different treatment options using LDDSs for the treatment of HNSCC and radiotherapy-induced damage and their potential to provide a better experience for patients, as well as the obstacles that need to be addressed to render them successful.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
11
|
He J, Zhang Y, Yu X, Xu C. Wearable patches for transdermal drug delivery. Acta Pharm Sin B 2023; 13:2298-2309. [PMID: 37425057 PMCID: PMC10326306 DOI: 10.1016/j.apsb.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.
Collapse
Affiliation(s)
- Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuyue Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
12
|
Turner JG, Laabei M, Li S, Estrela P, Leese HS. Antimicrobial releasing hydrogel forming microneedles. BIOMATERIALS ADVANCES 2023; 151:213467. [PMID: 37236117 DOI: 10.1016/j.bioadv.2023.213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Hydrogel-forming microneedle arrays as a technique for transdermal drug delivery show promise as an alternative to traditional drug delivery methods. In this work, hydrogel-forming microneedles have been created with effective, controlled delivery of amoxicillin and vancomycin within comparable therapeutic ranges to that of oral delivered antibiotics. Fabrication using reusable 3D printed master templates enabled quick and low-cost hydrogel microneedle manufacturing through micro-molding. By 3D printing at a tilt angle of 45° the resolution of the microneedle tip was improved by double (from ca. 64 μm down to 23 μm). Amoxicillin and vancomycin were encapsulated within the hydrogel's polymeric network through a unique room temperature swell/deswell drug loading method within minutes, eliminating the need for an external drug reservoir. The hydrogel-forming microneedle mechanical strength was maintained, and successful penetration of porcine skin grafts observed with negligible damage to the needles or surrounding skin morphology. Hydrogel swell rate was tailored by altering the crosslinking density, resulting in controlled antimicrobial release for an applicable delivered dosage. The potent antimicrobial properties of the antibiotic-loaded hydrogel-forming microneedles against both Escherichia coli and Staphylococcus aureus, highlights the beneficial use of hydrogel-forming microneedles towards the minimally invasive transdermal drug delivery of antibiotics.
Collapse
Affiliation(s)
- Joseph G Turner
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK; Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Shuxian Li
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Pedro Estrela
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK; Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Hannah S Leese
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK; Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
13
|
Increasing Skeletal Muscle Mass in Mice by Non-Invasive Intramuscular Delivery of Myostatin Inhibitory Peptide by Iontophoresis. Pharmaceuticals (Basel) 2023; 16:ph16030397. [PMID: 36986496 PMCID: PMC10058260 DOI: 10.3390/ph16030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sarcopenia is a major public health issue that affects older adults. Myostatin inhibitory-D-peptide-35 (MID-35) can increase skeletal muscle and is a candidate therapeutic agent, but a non-invasive and accessible technology for the intramuscular delivery of MID-35 is required. Recently, we succeeded in the intradermal delivery of various macromolecules, such as siRNA and antibodies, by iontophoresis (ItP), a non-invasive transdermal drug delivery technology that uses weak electricity. Thus, we expected that ItP could deliver MID-35 non-invasively from the skin surface to skeletal muscle. In the present study, ItP was performed with a fluorescently labeled peptide on mouse hind leg skin. Fluorescent signal was observed in both skin and skeletal muscle. This result suggested that the peptide was effectively delivered to skeletal muscle from skin surface by ItP. Then, the effect of MID-35/ItP on skeletal muscle mass was evaluated. The skeletal muscle mass increased 1.25 times with ItP of MID-35. In addition, the percentage of new and mature muscle fibers tended to increase, and ItP delivery of MID-35 showed a tendency to induce alterations in the levels of mRNA of genes downstream of myostatin. In conclusion, ItP of myostatin inhibitory peptide is a potentially useful strategy for treating sarcopenia.
Collapse
|
14
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
15
|
Liatsopoulou A, Varvaresou A, Mellou F, Protopapa E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int J Cosmet Sci 2022; 45:117-132. [PMID: 36326063 DOI: 10.1111/ics.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Iontophoresis is defined as the use of electric current to drive molecules across cell membranes through an electrolyte solution. In therapeutic context, it is used to facilitate the administration of bioactive substances, either systemically or locally. The technique presents various advantages and that is why it has been successfully used by a plethora of medical sciences. The constantly developing field of dermato-cosmetic science has also taken advantage of the possibilities offered by iontophoresis, aiming to enhance the delivery of the applied active ingredients and, thus, induce the desired cosmetic effects. METHODS The available literature was examined for evidence-based reports of safe and successful iontophoresis of pharmaceutical and cosmetic substances, in order to explore different iontophoretic applications in the field of dermato-cosmetic and dermato-aesthetic sciences. CONCLUSION Iontophoresis can be safely and successfully used in the treatment of ageing, photoageing, hyperpigmentation, oxidative stress, hair loss, hair removal, acne, acne sequelae and cellulite, providing many possibilities for enhanced treatment results.
Collapse
Affiliation(s)
- Aikaterini Liatsopoulou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Athanasia Varvaresou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Fotini Mellou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Evangelia Protopapa
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
16
|
Ragit R, Fulzele P, Rathi NV, Thosar NR, Khubchandani M, Malviya NS, Das S. Iontophoresis as an Effective Drug Delivery System in Dentistry: A Review. Cureus 2022; 14:e30658. [DOI: 10.7759/cureus.30658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
17
|
Kumar R, Chauhan S. Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. Int J Biol Macromol 2022; 221:842-864. [PMID: 36100000 DOI: 10.1016/j.ijbiomac.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a complex disease that starts with genetic alterations and mutations in healthy cells. The past decade has witnessed a huge demand for new biocompatibility and high-performance intelligent drug delivery systems. Curcumin (CUR) is a bioactive stimulant with numerous medical benefits. However, because of its hydrophobic nature, it has low bioavailability. The utilization of many biobased materials has been found to improve the loading of hydrophobic drugs. Cellulose nanocrystals (CNCs) with exceptional qualities and a wide range of applications, feature strong hydrophilicity and lipophilicity, great emulsification stability, high crystallinity and outstanding mechanical attributes. In this review, numerous CNCs-based composites have been evaluated for involvement in the controlled release of CUR. The first part of the review deals with recent advancements in the extraction of CNCs from lignocellulose biomass. The second elaborates some recent developments in the post-processing of CNCs in conjunction with other materials like natural polymers, synthetic polymers, β-CD, and surfactants for CUR loading/encapsulation and controlled release. Furthermore, numerous CUR drug delivery systems, challenges, and techniques for effective loading/encapsulation of CUR on CNCs-based composites have been presented. Finally, conclusions and future outlooks are also explored.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab 144205, India.
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| |
Collapse
|
18
|
The effect of iontophoresis delivery of fluoride in stannous fluoride desensitizing toothpaste on dentin permeability in human extracted teeth. Sci Rep 2022; 12:13615. [PMID: 35948761 PMCID: PMC9365827 DOI: 10.1038/s41598-022-18043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
This study aimed to determine the effect of iontophoresis delivery of fluoride in stannous fluoride (SnF2) toothpaste on dentin permeability in human extracted third molars. For dentin permeability test, 26 dentin specimens were randomly divided into 4 groups; SnF2 without-iontophoresis (n = 10), SnF2 with-iontophoresis (n = 10), no SnF2 without-iontophoresis (n = 3), and no SnF2 with-iontophoresis (n = 3). The hydraulic conductance of dentin (HD) was measured after smear layer removal, immediate treatment, 7 days, and acid challenge. The other 26 specimens were also prepared under these different conditions to assess degree of dentinal tubule occlusions using scanning electron microscopy (SEM). Percentage decrease of HD in SnF2 without-iontophoresis after immediate treatment, 7 days and acid challenge were 38.38 ± 13.61, 56.92 ± 17.22 and 33.07 ± 23.57%. The corresponding values in SnF2 with-iontophoresis were 42.16 ± 14.49, 62.35 ± 15.67 and 50.01 ± 12.60%, respectively. There was a significant difference between without- and with-iontophoresis groups after acid challenge (p < 0.05). For SEM, after 7 days, SnF2 with-iontophoresis showed deeper dentinal tubule occlusion (p < 0.05) and more resistance to acid challenge than SnF2 without-iontophoresis. No significant change was observed in groups of no SnF2 treatment. Cathode iontophoresis could enhance the effect of SnF2 toothpaste in decreasing dentin permeability and increasing resistance to acid challenge.
Collapse
|
19
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
20
|
Transdermal Delivery of Metformin Using Dissolving Microneedles and Iontophoresis Patches for Browning Subcutaneous Adipose Tissue. Pharmaceutics 2022; 14:pharmaceutics14040879. [PMID: 35456713 PMCID: PMC9029293 DOI: 10.3390/pharmaceutics14040879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a serious public health problem that is strongly associated with increased multiple comorbidities such as diabetes, cardiovascular disease, and some types of cancer. While current anti-obesity treatments have various issues, locally transforming energy-storing white adipose tissue (WAT) into energy-burning brown-like/beige adipose tissue, the so-called browning of WAT, has been suggested to enhance obesity treatment efficiency with minimized side effects. Metformin is a first-line antidiabetes drug and a potent activator of AMP-activated protein kinase. Emerging evidence has suggested that metformin might enhance energy expenditure via the browning of WAT and hence reduce body weight. Subcutaneous WAT is easier to access and has a stronger browning potential than other WAT depots. In this study, we used dissolvable poly (lactic-co-glycolic acid) microneedles (MN) to deliver metformin to the subcutaneous WAT in obese C57BL/6J mice with the assistance of iontophoresis (INT), and then investigated metformin-induced WAT browning and its subsequent thermogenesis effects. Compared with MN alone or INT alone, MN + INT had better anti-obesity activity, as indicated by decreasing body weight and fat gain, increased energy expenditure, decreased fat pad size, and improved energy metabolism through the browning of WAT. Browning subcutaneous WAT by delivering metformin and other browning agents using this MN + INT approach might combat obesity in an effective, easy, and safe regimen.
Collapse
|
21
|
The effect of fluoride iontophoresis on seal ability of self-etch adhesive in human dentin in vitro. BMC Oral Health 2022; 22:109. [PMID: 35366856 PMCID: PMC8976950 DOI: 10.1186/s12903-022-02146-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background Fluoride iontophoresis (FI) is a non-invasive method for the transfer of fluoride ions under electrical pressure into dental hard tissue. This study aimed to determine the effect of FI on the seal ability of self-etch adhesive in human dentin using dentin permeability test and scanning electron microscopy (SEM). Methods The experiments were divided into 2 series: series 1 was performed on 28 extracted intact third molars and series 2 was performed on 28 extracted carious third molars (ICDAS 4 and 5). In each series, 20 teeth were used for dentin permeability test and 8 teeth were used for SEM study. For dentin permeability test, the specimens were divided into dentin without FI (control) and dentin with FI (experimental) subgroups. Hydraulic conductance (HD) of dentin was measured before and after adhesive treatment, and calculated for the percentage decrease of HD in each subgroup. Two-way ANOVA and Tukey test were used for statistical analysis. SEM study was used to assess the seal ability of self-etch adhesive and penetration of fluoride ions into dentinal tubules. Results HD after self-etch adhesive treatment reduced by 57.75 ± 17.99% in intact dentin with FI, 46.60 ± 17.03% in intact dentin without FI, 45.00 ± 15.30% in caries affected dentin without FI, and 37.28 ± 14.72% in caries affected dentin with FI. There was no significant difference in percentage decrease of HD between dentin without FI and dentin with FI (P = 0.742); meanwhile, intact dentin with FI had significant greater percentage decrease than caries affected dentin with FI (P < 0.05). SEM findings showed FI produced more particle formation and deeper precipitation in intact dentin than those in caries affected dentin. Conclusions FI did not affect the seal ability of self-etch adhesive in human dentin when compared to without FI. However, FI could augment the seal ability of the self-etch adhesive in intact dentin better than that in caries affected dentin. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02146-w.
Collapse
|
22
|
Young SAE, Muthami J, Pitcher M, Antovski P, Wamea P, Murphy RD, Haghniaz R, Schmidt A, Clark S, Khademhosseini A, Sheikhi A. Engineering hairy cellulose nanocrystals for chemotherapy drug capture. MATERIALS TODAY. CHEMISTRY 2022; 23:100711. [PMID: 35224320 PMCID: PMC8865441 DOI: 10.1016/j.mtchem.2021.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people every year. While chemotherapy remains one of the most common cancer treatments in the world, the severe side effects of chemotherapy drugs impose serious concerns to cancer patients. In many cases, the chemotherapy can be localized to maximize the drug effects; however, the drug systemic circulation induces undesirable side effects. Here, we have developed a highly efficient cellulose-based nanoadsorbent that can capture more than 6000 mg of doxorubicin (DOX), one of the most widely used chemotherapy drugs, per gram of the adsorbent at physiological conditions. Such drug capture capacity is more than 3200% higher than other nanoadsorbents, such as DNA-based platforms. We show how anionic hairy cellulose nanocrystals, also known as electrosterically stabilized nanocrystalline cellulose (ENCC), bind to positively charged drugs in human serum and capture DOX immediately without imposing any cytotoxicity and hemolytic effects. We elucidate how ENCC provides a remarkable platform for biodetoxification at varying pH, ionic strength, ion type, and protein concentration. The outcome of this research may pave the way for developing the next generation in vitro and in vivo drug capture additives and devices.
Collapse
Affiliation(s)
- Sarah A. E. Young
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joy Muthami
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mica Pitcher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Petar Antovski
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Patricia Wamea
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robert Denis Murphy
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Reihaneh Haghniaz
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Andrew Schmidt
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Samuel Clark
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Amir Sheikhi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
24
|
Bora DJ, Dasgupta R. Numerical simulation of iontophoresis for in-silico prediction of transdermal drugs in the dermal layers using skin impedance values. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106551. [PMID: 34864336 DOI: 10.1016/j.cmpb.2021.106551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Transdermal delivery of a therapeutic drug is a non-invasive method of drug administration. For a controlled delivery of the maximum number of drugs, several external enhancement mechanisms are used in the domain of transdermal drug delivery (TDD). Iontophoresis is one of the processes which uses a weak electric current to increase drug delivery and electrically control its penetration into the body. This method is governed by the Nernst-Planck equation, which gives the total flux of administering drugs due to iontophoresis. In this work, an effort has been made to simulate iontophoresis to predict transdermal drugs in the dermal layers using electrical equivalent skin models. METHODS As the executable route of drug administration is skin, the electrical impedance value of the dermal layers can be utilized in predicting the amount of iontophoretic drug flux by introducing impedance parameters of skin in the Nernst-Planck equation. Researchers have developed electrical equivalent models of skin that explain the skin's physiological stratification and biological properties. RESULTS Numerical simulation of iontophoresis is performed using the human skin impedance values with these impedance models of skin to predict drug concentrations in the dermal layers. For the computation and analysis of drug delivery using simulations, boundary conditions were developed based on the descriptions of the electrical impedance models and the morphology of human skin. CONCLUSIONS This proposed method establishes a clear relationship between TDD and skin impedance. It could be used in in-silico prediction before experimentation of any drugs on live animals or humans. The adopted methodology could be implemented in programming to develop software for real-time prediction of transdermal drugs in dermal layers using instantaneous skin impedance values. Further researchers can work upon this idea to include more natural constraints that identify complex biological features of the skin and physio-chemical properties of drugs.
Collapse
Affiliation(s)
- Dhruba Jyoti Bora
- Department of Electronics and Instrumentation Engineering, NIT Silchar, Assam, Silchar, India.
| | - Rajdeep Dasgupta
- Department of Electronics and Instrumentation Engineering, NIT Silchar, Assam, Silchar, India
| |
Collapse
|
25
|
Li Z, Fang X, Yu D. Transdermal Drug Delivery Systems and Their Use in Obesity Treatment. Int J Mol Sci 2021; 22:12754. [PMID: 34884558 PMCID: PMC8657870 DOI: 10.3390/ijms222312754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.
Collapse
Affiliation(s)
| | | | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Z.L.); (X.F.)
| |
Collapse
|
26
|
Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111798. [PMID: 33579445 DOI: 10.1016/j.msec.2020.111798] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.
Collapse
|
27
|
Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, Demiri E, Vizirianakis IS, Tzetzis D, Fatouros DG. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm 2021; 597:120303. [PMID: 33540009 DOI: 10.1016/j.ijpharm.2021.120303] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
The present study aimed to fabricate a hollow microneedle device consisting of an array and a reservoir by means of 3D printing technology for transdermal peptide delivery. Hollow microneedles (HMNs) were fabricated using a biocompatible resin material, while PLA filament was used for the reservoirs. The fabricated microdevice was characterized by means of optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle measurements and leakage inspection studies to ensure the passageway of liquid formulations. Mechanical failure and penetration tests were carried out and supported by Finite Element Analysis (FEA). The cytocompatibility of the microneedle arrays was assessed to human keratinocytes (HaCaT). Finally, the transport of the model peptide octreotide acetate across artificial membranes was assessed in Franz cells using the aforementioned HMN design.
Collapse
Affiliation(s)
- Iakovos Xenikakis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Tsongas
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikoleta Theodoroula
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni P Kalogianni
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Euterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK - Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece.
| | - Dimitrios G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
28
|
do Couto RO, Cubayachi C, Duarte MPF, Lopez RFV, Pedrazzi V, De Gaitani CM, de Freitas O. Towards the advance of a novel iontophoretic patch for needle-free buccal anesthesia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111778. [PMID: 33641881 DOI: 10.1016/j.msec.2020.111778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
The aim of this work was to develop a mucoadhesive iontophoretic patch for anesthetic delivery in the buccal epithelium. The patch was comprised of three different layers, namely i) drug release (0.64 cm2); ii) mucoadhesive (1.13 cm2); and iii) backing (1.13 cm2). Prilocaine and lidocaine hydrochlorides were used as model drugs (1:1 ratio, 12.5 mg per unit). An anode electrode (0.5 cm2 spiral silver wire) was placed in between the drug release and mucoadhesive/backing layers to enable iontophoresis. Surface microscopy; mechanical and in vitro mucoadhesive properties; drug release kinetics and mechanism; and drug permeation through the porcine esophageal epithelium were assessed. Topographic analysis evidenced differences in the physical structures for the several layers. All layers presented suitable handling properties i.e., flexibility, elasticity and resistance. Both the release and mucoadhesive layers presented features of a soft and tough material, while the backing layer matched the characteristics of a hard and brittle material. A synergy between the drug release and mucoadhesive layers on the mucoadhesive force and work of adhesion of the tri-layered patch was observed. Passive drug release of both drugs fitted to First-order, Hixson-Crowell and Weibull kinetic models; and the release mechanism was attributed to anomalous transport. Iontophoresis remarkably enhanced the permeation of both drugs, but mainly prilocaine through the mucosa as evidenced by the permeability coefficient parameter (3.0-fold). The amount of these amino amide salts retained in the mucosa were also equally enhanced (4.7-fold), while the application of a tiny constant electric current (1 mA·cm-2·h-1) significantly decreased the lag time for lidocaine permeation by about 45%. In view of possible in vitro / in vivo correlations, the buccal iontophoretic patch displays a promising strategy for needle-free and patient-friendly local anesthesia in dentistry.
Collapse
Affiliation(s)
- Renê Oliveira do Couto
- Universidade Federal de São João del Rei, Campus Centro-Oeste (Dona Lindu), Divinópolis, MG, Brazil.
| | - Camila Cubayachi
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Vinícius Pedrazzi
- University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Osvaldo de Freitas
- University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Kim YA, Jeong JO, Park JS. Preparation and Characterization of Ionic Conductive Poly(acrylic Acid)-Based Silicone Hydrogels for Smart Drug Delivery System. Polymers (Basel) 2021; 13:406. [PMID: 33514046 PMCID: PMC7865612 DOI: 10.3390/polym13030406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, we developed a smart drug delivery system that can efficiently deliver the required amounts of drugs using the excellent ion conductivity of poly(acrylic acid) (PAA) and an electrical stimulus. As a result of its having carboxyl groups, PAA hydrogel can be used in drug delivery patches to release drugs by ionic conductivity. However, PAA hydrogel has low durability and poor mechanical properties. The carboxyl group of PAA was combined with a siloxane group of silicone using electron-beam irradiation to easily form a crosslinked structure. The PAA-silicone hydrogel has excellent mechanical properties. Specifically, the tensile strength increased more than 3.5 times. In addition, we observed its cell compatibility using fluorescence staining and CCK-8 assays and found good cell viability. Finally, it was possible to control the drug delivery rate efficiently using the voltage applied to the ion-conductive hydrogel. As the voltage was increased to 3, 5, and 7 V, the amount of drug released was 53, 88, and 96%, respectively. These excellent properties of the PAA-silicone hydrogel can be used not only for whitening or anti-wrinkling cosmetics but also in medical drug-delivery systems.
Collapse
Affiliation(s)
| | | | - Jong-Seok Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (Y.-A.K.); (J.-O.J.)
| |
Collapse
|
30
|
Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermal Delivery Systems for Biomolecules. J Pharm Innov 2021; 17:319-332. [PMID: 33425065 PMCID: PMC7786146 DOI: 10.1007/s12247-020-09525-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2020] [Indexed: 01/12/2023]
Abstract
Purpose The present review article focuses on highlighting the main technologies used as tools that improve the delivery of transdermal biomolecules, addressing them from the point of view of research in the development of transdermal systems that use physical and chemical permeation enhancers and nanocarrier systems or a combination of them. Results Transdermal drug delivery systems have increased in importance since the late 1970s when their use was approved by the Food and Drug Administration (FDA). They appeared to be an alternative resource for the administration of many potent drugs. The first transdermal drug delivery system used for biomolecules was for the treatment of hormonal disorders. Biomolecules have been used primarily in many treatments for cancer and diabetes, vaccines, hormonal disorders, and contraception. Conclusions The latest technologies that have used such transdermal biomolecule transporters include electrical methods (physical penetration enhancers), some chemical penetration enhancers and nanocarriers. All of them allow the maintenance of the physical and chemical properties of the main proteins and peptides through these clinical treatments, allowing their efficient storage, transport, and release and ensuring the achievement of their target and better results in the treatment of many diseases. Graphical abstract
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| | - Omar Rodrigo Guadarrama-Escobar
- Sección de Estudios de Posgrado e Investigación de la Escuela Nacional de Ciencias Biológicas. Programa de Posgrado: Doctorado en Ciencias Químico Biológicas-Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Santo Tomás C. P. 11340, Alcaldía Miguel Hidalgo, Ciudad de México, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Unidad de Investigación Multidisciplinaria, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, México, Estado de México Mexico
| |
Collapse
|
31
|
Moarefian M, Davalos RV, Tafti DK, Achenie LE, Jones CN. Modeling iontophoretic drug delivery in a microfluidic device. LAB ON A CHIP 2020; 20:3310-3321. [PMID: 32869052 PMCID: PMC8272289 DOI: 10.1039/d0lc00602e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iontophoresis employs low-intensity electrical voltage and continuous constant current to direct a charged drug into a tissue. Iontophoretic drug delivery has recently been used as a novel method for cancer treatment in vivo. There is an urgent need to precisely model the low-intensity electric fields in cell culture systems to optimize iontophoretic drug delivery to tumors. Here, we present an iontophoresis-on-chip (IOC) platform to precisely quantify carboplatin drug delivery and its corresponding anti-cancer efficacy under various voltages and currents. In this study, we use an in vitro heparin-based hydrogel microfluidic device to model the movement of a charged drug across an extracellular matrix (ECM) and in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Transport of the drug through the hydrogel was modeled based on diffusion and electrophoresis of charged drug molecules in the direction of an oppositely charged electrode. The drug concentration in the tumor extracellular matrix was computed using finite element modeling of transient drug transport in the heparin-based hydrogel. The model predictions were then validated using the IOC platform by comparing the predicted concentration of a fluorescent cationic dye (Alexa Fluor 594®) to the actual concentration in the microfluidic device. Alexa Fluor 594® was used because it has a molecular weight close to paclitaxel, the gold standard drug for treating TNBC, and carboplatin. Our results demonstrated that a 50 mV DC electric field and a 3 mA electrical current significantly increased drug delivery and tumor cell death by 48.12% ± 14.33 and 39.13% ± 12.86, respectively (n = 3, p-value <0.05). The IOC platform and mathematical drug delivery model of iontophoresis are promising tools for precise delivery of chemotherapeutic drugs into solid tumors. Further improvements to the IOC platform can be made by adding a layer of epidermal cells to model the skin.
Collapse
Affiliation(s)
- Maryam Moarefian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
32
|
Iontophoretic Dexamethasone Phosphate Compared to Topical Prednisolone Acetate 1% for Noninfectious Anterior Segment Uveitis. Am J Ophthalmol 2020; 211:76-86. [PMID: 31726034 DOI: 10.1016/j.ajo.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate the safety and efficacy of dexamethasone phosphate ophthalmic solution (EGP-437) delivered by a transscleral iontophoresis delivery system (EyeGate II) compared to that of topical prednisolone acetate 1% (PA 1%) in subjects with noninfectious anterior uveitis. DESIGN Prospective, randomized, double-masked, parallel group, noninferiority clinical trial. METHODS A total of 193 subjects with active noninfectious anterior uveitis (anterior chamber [AC] cell count ≥11 cells) were randomized to EGP-437 delivered by iontophoresis (days 0 and 7) or self-administered PA 1% daily (tapered schedule, days 0-28). Masking was maintained with placebo iontophoresis or eye drops. The primary efficacy endpoint was the proportion of subjects with an AC cell count of zero on day 14. Noninferiority of EGP-437 was defined if the lower limit of the confidence interval (CI) for the difference (EGP-437 minus PA 1%) was less than -10%. RESULTS At day 14, 32 of 96 EGP-437 subjects (33.3%) and 32 of 97 PA 1% subjects (33.0%) had an AC cell count of zero (difference, 0.34; 95% CI, -12.94 to 13.63; P = 0.064). Efficacy trended better with EGP-437 among patients with more severe baseline uveitis (AC cell count >25). Safety and tolerability were good with both treatments. EGP-437 subjects experienced fewer IOP elevations ≥6 mm Hg versus PA 1% subjects (13 vs 24 incidents, respectively, through day 28). CONCLUSIONS Despite clinically similar response rates, statistical noninferiority of EGP-437 versus a tapered regimen of PA 1% was not achieved. Numerical trends suggesting fewer IOP elevations with EGP-437, similar efficacy overall, and possibly better efficacy in more severe disease warrant further study.
Collapse
|
33
|
Torao T, Mimura M, Oshima Y, Fujikawa K, Hasan M, Shimokawa T, Yamazaki N, Ando H, Ishida T, Fukuta T, Tanaka T, Kogure K. Characteristics of unique endocytosis induced by weak current for cytoplasmic drug delivery. Int J Pharm 2020; 576:119010. [DOI: 10.1016/j.ijpharm.2019.119010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
|
34
|
Yamada M, Prow TW. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: Translation and commercialization. Adv Drug Deliv Rev 2020; 153:2-17. [PMID: 32339593 DOI: 10.1016/j.addr.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023]
Abstract
This review analyses physical drug delivery enhancement technologies with a focus on improving UV damaged skin, actinic keratoses and non-melanoma skin cancer treatment. In recent years, physical drug delivery enhancement has been shown to enhance cosmeceutical and skin cancer treatment efficacy, but there are pros and cons to each approach which we discuss in detail. Mechanisms of action, clinical efficacy, experimental design, outcomes in academic publications, clinical trial reports and patents are explored to evaluate each technology with a critical, translation focused lens. We conclude that the commercial success of cosmeceutical applications, e.g. microneedles, will drive further innovation in this arena that will impact how actinic keratoses and non-melanoma skin cancers are clinically managed.
Collapse
|
35
|
Iontophoresis in lateral epicondylitis: a randomized, double-blind clinical trial. J Shoulder Elbow Surg 2019; 28:1743-1749. [PMID: 31447123 DOI: 10.1016/j.jse.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Lateral epicondylitis (LE) is a painful condition typically caused by excessive use of tendons, resulting in tendinopathy, inflammation, pain, and sensitivity changes in the lateral elbow. Iontophoresis is a noninvasive method of systemic and local drug delivery by means of a current. The study aimed to evaluate the effects of iontophoresis in patients with LE. METHODS We performed a randomized, double-blind clinical trial. Twenty-four patients with LE, randomized into an iontophoresis group and a galvanic current group. The iontophoresis group received a solution of dexamethasone (4 mg/mL) and gel lidocaine-applied on the negative electrode by means of a continuous current at 5 mA for 15 minutes-and the positive electrode received a base gel solution. Patients in the galvanic current group received the same protocol but using a base gel solution on both electrodes. RESULTS Both groups showed a significant improvement in pain on exertion and rest; increased handgrip strength in elbow extension and flexion; and improved function, as evaluated by the Patient-Rated Tennis Elbow Evaluation scale (P < .05). Iontophoresis showed superior results compared with galvanic current in pain on exertion and rest and in the function of individuals with tennis elbow. CONCLUSION Iontophoresis proved to be an effective technique in reducing pain and improving strength and function in individuals with LE (tennis elbow).
Collapse
|
36
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
37
|
Araújo MRP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. The Digital Pharmacies Era: How 3D Printing Technology Using Fused Deposition Modeling Can Become a Reality. Pharmaceutics 2019; 11:pharmaceutics11030128. [PMID: 30893842 PMCID: PMC6471727 DOI: 10.3390/pharmaceutics11030128] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
The pharmaceutical industry is set to join the fourth industrial revolution with the 3D printing of medicines. The application of 3D printers in compounding pharmacies will turn them into digital pharmacies, wrapping up the telemedicine care cycle and definitively modifying the pharmacotherapeutic treatment of patients. Fused deposition modeling 3D printing technology melts extruded drug-loaded filaments into any dosage form; and allows the obtainment of flexible dosages with different shapes, multiple active pharmaceutical ingredients and modulated drug release kinetics—in other words, offering customized medicine. This work aimed to present an update on this technology, discussing its challenges. The co-participation of the pharmaceutical industry and compounding pharmacies seems to be the best way to turn this technology into reality. The pharmaceutical industry can produce drug-loaded filaments on a large scale with the necessary quality and safety guarantees; while digital pharmacies can transform the filaments into personalized medicine according to specific prescriptions. For this to occur, adaptations in commercial 3D printers will need to meet health requirements for drug products preparation, and it will be necessary to make advances in regulatory gaps and discussions on patent protection. Thus, despite the conservatism of the sector, 3D drug printing has the potential to become the biggest technological leap ever seen in the pharmaceutical segment, and according to the most optimistic prognostics, it will soon be within reach.
Collapse
Affiliation(s)
- Maisa R P Araújo
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Livia L Sa-Barreto
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Tais Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|