1
|
Pereira TA, Ramos DN, Sobral LM, Martins YA, Petrilli R, Fantini MDAC, Leopoldino AM, Lopez RFV. Liquid crystalline nanogel targets skin cancer via low-frequency ultrasound treatment. Int J Pharm 2023; 646:123431. [PMID: 37739094 DOI: 10.1016/j.ijpharm.2023.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The potential of low-frequency ultrasound (LFU) combined with nanotechnology-based formulations in improving skin tumors topical treatment was investigated. The impact of solid lipid nanoparticles (SLN) and hydrophilic nanogels as coupling media on LFU-induced skin localized transport regions (LTR) and the penetration of doxorubicin (DOX) in LFU-pretreated skin was evaluated. SLN were prepared by the microemulsion technique and liquid crystalline nanogels using Poloxamer. In vitro, the skin was pretreated with LFU until skin resistivity of ∼1 KΩ.cm2 using the various coupling media followed by evaluation of DOX penetration from DOX-nanogel and SLN-DOX in skin layers. Squamous cell carcinoma (SCC) induced in mice was LFU-treated using the nanogel with the LFU tip placed 5 mm or 10 mm from the tumor surface, followed by DOX-nanogel application. LFU with nanogel coupling achieved larger LTR areas than LFU with SLN coupling. In LFU-pretreated skin, DOX-nanogel significantly improved drug penetration to the viable epidermis, while SLN-DOX hindered drug transport through LTR. In vivo, LFU-nanogel pretreatment with the 10 mm tip distance induced significant tumor inhibition and reduced tumor cell numbers and necrosis. These findings suggest the importance of optimizing nanoparticle-based formulations and LFU parameters for the clinical application of LFU technology in skin tumor treatment.
Collapse
Affiliation(s)
- Tatiana Aparecida Pereira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Danielle Nishida Ramos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Lays Martin Sobral
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil.
| | | | - Andréia Machado Leopoldino
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
2
|
Gerotto Viola S, Facco Dalmolin L, Villarruel Muñoz JB, Araújo Martins Y, Dos Santos Ré AC, Aires CP, Fonseca Vianna Lopez R. Investigation of the antimicrobial effect of anodic iontophoresis on Gram-positive and Gram-negative bacteria for skin infections treatment. Bioelectrochemistry 2023; 151:108374. [PMID: 36750011 DOI: 10.1016/j.bioelechem.2023.108374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023]
Abstract
Iontophoresis, a non-invasive application of a constant low-intensity electric current, is a promising strategy to accelerate wound healing. Although its mechanisms are not yet fully elucidated, part of its action seems related to inhibiting bacteria growth. This work aimed to investigate the antimicrobial effect of iontophoresis using Staphylococcus epidermidis and Escherichia coli strains, Gram-positive and Gram-negative bacteria, respectively. Anodic iontophoresis was applied to each bacterial suspension using Ag/AgCl electrodes, and bacteria viability was evaluated after 24 h incubation by counting colony-forming units. A Quality-by-Design approach was performed to assess the influence of the iontophoresis' intensity and application time on bacterial viability. Cell morphology was evaluated by scanning electron microscopy. Iontophoresis showed antimicrobial effects on the Gram-positive bacteria only at 5 mA and 60 min application. However, a linear relationship was observed between intensity and application time for the Gram-negative one, causing drastic morphological changes and up to 98 % death. The cell wall of Gram-negative bacteria seems more susceptible to disorganization triggered by iontophoresis-induced ion transport than Gram-positive ones. Therefore, anodic iontophoresis can be a powerful ally in controlling Gram-negative bacteria proliferation in wounds.
Collapse
Affiliation(s)
- Sofia Gerotto Viola
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Ana Carolina Dos Santos Ré
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Carolina Patrícia Aires
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
3
|
Nanoemulsions Based on Sunflower and Rosehip Oils: The Impact of Natural and Synthetic Stabilizers on Skin Penetration and an Ex Vivo Wound Healing Model. Pharmaceutics 2023; 15:pharmaceutics15030999. [PMID: 36986857 PMCID: PMC10053715 DOI: 10.3390/pharmaceutics15030999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Vegetable oils offer excellent biological properties, but their high lipophilicity limits their bioavailability. This work aimed to develop nanoemulsions based on sunflower and rosehip oils and to evaluate their wound-healing activity. The influence of phospholipids of plant origin on nanoemulsions’ characteristics was investigated. A nanoemulsion prepared with a mixture of phospholipids and synthetic emulsifiers (Nano-1) was compared with another prepared only with phospholipids (Nano-2). The healing activity was evaluated in wounds induced in human organotypic skin explant culture (hOSEC) based on histological and immunohistochemical analysis. The hOSEC wound model was validated, showing that high nanoparticle concentration in the wound bed interferes with cell mobility and the ability to respond to the treatment. Nanoemulsions were 130 to 370 nm, with a concentration of 1013 particles/mL, and a low potential to induce inflammatory processes. Nano-2 was three times larger than Nano-1 but less cytotoxic and could target the oils to the epidermis. Nano-1 permeated intact skin to the dermis and showed a more prominent healing effect than Nano-2 in the hOSEC wound model. Changes in the lipid nanoemulsion stabilizers impacted the cutaneous and cellular penetration of the oils, cytotoxicity, and healing kinetics, resulting in versatile delivery systems.
Collapse
|
4
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
5
|
Pereira I, Monteiro C, Pereira-Silva M, Peixoto D, Nunes C, Reis S, Veiga F, Hamblin MR, Paiva-Santos AC. Nanodelivery systems for cutaneous melanoma treatment. Eur J Pharm Biopharm 2023; 184:214-247. [PMID: 36773725 DOI: 10.1016/j.ejpb.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous melanoma (CM) is a multifactorial disease whose treatment still presents challenges: the rapid progression to advanced CM, which leads to frequent recurrences even after surgical excision and, notably, the low response rates and resistance to the available therapies, particularly in the case of unresectable metastatic CM. Thereby, alternative innovative therapeutic approaches for CM continue to be searched. In this review we discuss relevant preclinical research studies, and provide a broad-brush analysis of patents and clinical trials which involve the application of nanotechnology-based delivery systems in CM therapy. Nanodelivery systems have been developed for the delivery of anticancer biomolecules to CM, which can be administered by different routes. Overall, nanosystems could promote technological advances in several therapeutic modalities and can be used in combinatorial therapies. Nevertheless, the results of these preclinical studies have not been translated to clinical applications. Thus, concerted and collaborative research studies involving basic, applied, translational, and clinical scientists need to be performed to allow the development of effective and safe nanomedicines to treat CM.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carina Monteiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
6
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Silva CC, Benati RB, Massaro TNC, Pereira KC, Gaspar LR, Marcato PD. Antioxidant and anti-tyrosinase activities of quercetin-loaded olive oil nanoemulsion as potential formulation for skin hyperpigmentation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Cristiane C. Silva
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rogério B. Benati
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Taís N. C. Massaro
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Karina C. Pereira
- Tecnoprot, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lorena R. Gaspar
- Tecnoprot, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Priscyla D. Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Kushwaha AC, Mohanbhai SJ, Sardoiwala MN, Jaganathan M, Karmakar S, Roy Choudhury S. Nanoemulsified Genistein and Vitamin D Mediated Epigenetic Regulation to Inhibit Osteoporosis. ACS Biomater Sci Eng 2022; 8:3810-3818. [PMID: 36005299 DOI: 10.1021/acsbiomaterials.2c00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The imbalance in the bone remodeling process with more bone resorption by osteoclasts compared to bone formation by osteoblasts results in a metabolic bone disorder known as osteoporosis. This condition reduces the bone mineral density and increases the risk of fractures due to low bone mass and disrupted bone microarchitecture. Osteoclastogenesis increases when the receptor activator NFκB ligand (RANKL) on the osteoblast surface binds to the receptor activator NFκB (RANK) on the osteoclast surface and the function of the decoy receptor of RANKL, osteoprotegrin, is compromised due to external stimuli such as heparin and lipopolysaccharides. The RANK/RANKL axis promotes the nuclear factor kappa B (NFκB) expression, which in turn increases the histone methyltransferase activity of EzH2 and EzH1 for the epigenetic regulation of osteoclastogenesis-related genes. Genistein counteracts NFκB-induced osteoclastogenesis and downstream signaling through the direct regulation of histone methyltransferase, EzH2 and EzH1, transcription. However, genistein possesses limitations like low bioavailability, low water solubility, high estrogen activity, and thyroid side effects, which obstruct its therapeutic usage. Here, the nanoemulsified formulation of genistein with vitamin D was utilized to circumvent the limitations of genistein so that it can be utilized for therapeutic purposes in osteoporosis management. The nanoemulsification of genistein and vitamin D was performed through the spontaneous emulsification using Tween 80 and medium chain triglyceride oil as an organic phase. The physiologically stable and biocompatible combination of the genistein and vitamin D nanoemulsion (GVNE) exhibited the controlled release pattern of genistein with Korsmeyer-Peppas and Higuchi models under different pH conditions (7.4, 6.5, and 1.2). The GVNE potentially enhanced the therapeutic efficacy under in vitro osteoporosis models and helped restore disease parameters like alkaline phosphatase activity, tartrate-resistant acid phosphatase activity, and the formation of multinuclear giant cells. Molecularly, the GVNE overturned the LPS-induced osteoclastogenesis by downregulation of NFκB expression along with its binding on EzH2 and EzH1 promoters. GVNE effects on the osteoporosis model established it as an efficient antiosteoporotic therapy. This nanonutraceutical-based formulation provides an epigenetic regulation of osteoporosis management and opens new avenues for alternate epigenetic therapies for osteoporosis.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Mahendran Jaganathan
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
9
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
10
|
Nikolić I, Simić M, Pantelić I, Stojanović G, Antić Stanković J, Marković B, Savić S. Chemical vs. Physical Methods to Improve Dermal Drug Delivery: A Case Study with Nanoemulsions and Iontophoresis. Pharmaceutics 2022; 14:pharmaceutics14061144. [PMID: 35745717 PMCID: PMC9229366 DOI: 10.3390/pharmaceutics14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
So far, various approaches have been proposed to improve dermal drug delivery. The use of chemical penetration enhancers has a long history of application, while methods based on the electrical current (such as iontophoresis) stand out as promising “active” techniques. Aiming to evaluate the contribution of different approaches to dermal delivery, in this work curcumin-loaded nanoemulsions with and without monoterpenes (eucalyptol or pinene) as chemical penetration enhancers, and a custom-made adhesive dermal delivery system based on iontophoresis were designed and assessed. In an in vivo study applying skin bioengineering techniques, their safety profile was proven. Three examined iontophoresis protocols, with total skin exposure time of 15 min (continuous flow for 15 min (15-0); 3 min of continuous flow and 2 min pause (3-2; 5 cycles) and 5 min of continuous flow and 1 min pause (5-1; 3 cycles) were equally efficient in terms of the total amount of curcumin that penetrated through the superficial skin layers (in vivo tape stripping) (Q3-2 = 7.04 ± 3.21 μg/cm2; Q5-1 = 6.66 ± 2.11 μg/cm2; Q15-0 = 6.96 ± 3.21 μg/cm2), significantly more efficient compared to the referent nanoemulsion and monoterpene-containing nanoemulsions. Further improvement of an efficient mobile adhesive system for iontophoresis would be a practical contribution in the field of dermal drug application.
Collapse
Affiliation(s)
- Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade—Faculty of Pharmacy, 11000 Belgrade, Serbia; (I.N.); (I.P.); (S.S.)
| | - Mitar Simić
- Department of Electronics, University of Novi Sad—Faculty of Technical Sciences, 21000 Novi Sad, Serbia; (M.S.); (G.S.)
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade—Faculty of Pharmacy, 11000 Belgrade, Serbia; (I.N.); (I.P.); (S.S.)
| | - Goran Stojanović
- Department of Electronics, University of Novi Sad—Faculty of Technical Sciences, 21000 Novi Sad, Serbia; (M.S.); (G.S.)
| | - Jelena Antić Stanković
- Department of Microbiology and Immunology, University of Belgrade—Faculty of Pharmacy, 11000 Belgrade, Serbia;
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade—Faculty of Pharmacy, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3951-341
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade—Faculty of Pharmacy, 11000 Belgrade, Serbia; (I.N.); (I.P.); (S.S.)
| |
Collapse
|
11
|
Tarik Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and Solid Nanoemulsion for Improving Oral Delivery of a Breast Cancer Drug: Formulation, Evaluation, and a Comparison Study. Saudi Pharm J 2021; 29:1278-1288. [PMID: 34819790 PMCID: PMC8596290 DOI: 10.1016/j.jsps.2021.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Letrozole (LZ) is an aromatase inhibitor, which inhibits the formation of estrogens from androgens. Nanoemulsion is a liquid emulsion formulation utilized to increase solubility, bioavailability, and drug delivery to cancer cells. This study aims to improve LZ oral delivery through formulating solid nanoemulsion (SNE). Peppermint oil, tween 80, and transcutol P were used as an oil, surfactant, and co-surfactant, respectively. The optimized nanoemulsion (NE-3) was then incorporated into solid polyethylene glycol (PEG) to formulate (SNE). The optimized (NE-3), SNE-2, and the available marketed tablet have been compared. The optimized (NE-3) was selected according to specific parameters of optimum small nano-size 80 nm, PDI of 0.181, the zeta potential of-98.2, high transmittance (99.78%), optimum pH (5.6), a high percent of LZ content (99.03 ± 1.90), the relatively low viscosity of 60.2 mPa.s, and a rapid release of LZ within 30 min. NE-3 was selected to be formulated as SNE. LZ's best release rate was 80% in 5 min with a content homogeneity of 99.85 ± 0.04 for SNE-2. Zero-order kinetics is determined to have the greatest R2 values. Field emission scanning electron microscopy (FE-SEM) detected that SNE-2 was (36.75-96.64 nm) with a spherical form and no adhesion or aggregation. FT-IR showed no significant variations in position and shape of the absorption peaks between the pure drug and optimal formulation diagrams. This novel nanoemulsion technology aids in improving the solubility of poorly water-soluble drugs, particularly the SNE delivery method, which has a higher in-vitro release rate and expiration date of LZ than others.
Collapse
Affiliation(s)
- Anas Tarik Alhamdany
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ashti M H Saeed
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maryam Alaayedi
- Department of Pharmaceutics, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
12
|
Cationic zinc (II) phthalocyanine nanoemulsions for photodynamic inactivation of resistant bacterial strains. Photodiagnosis Photodyn Ther 2021; 34:102301. [PMID: 33894372 DOI: 10.1016/j.pdpdt.2021.102301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND The growing emergence of microbial resistance to antibiotics represents a worldwide challenge. Antimicrobial photodynamic inactivation (aPDI) has been introduced as an alternative technique, especially when combined with nanotechnology. Therefore, this study was designed to investigate the therapeutic merits of combined aPDI and nanoemulsion in infections caused by resistant bacterial strains. METHODS Cationic zinc (II) phthalocyanine nanoemulsions (ZnPc-NE) were prepared using isopropyl myristate (IPM) as oil phase, egg phosphatidylcholine (egg PC) as emulsifier, and N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB). Nanoemulsions were characterized for particle size, polydispersity, zeta potential, viscosity, and skin deposition. The in-vitro aPDI was investigated on human resistant pathogens; gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative Multidrug-resistant strain of Escherichia coli (MDR E. coli), under different experimental conditions. In addition, in-vivo model of abrasion wound infected by MDR E. coli was induced in rats to investigate the therapeutic potential of the selected formulation. RESULTS It was evident that the selected ZnPc formulation (20 % IPM, 2 % egg PC and 0.5 % CTAB) displayed a particle size of 209.9 nm, zeta potential +73.1 mV, and 23.66 % deposition of ZnPc in skin layers. Furthermore, the selected formulation combined with light achieved almost 100 % eradication of the two bacterial strains, with superior bacterial load reduction and wound healing propertiesin-vivo, compared to either the nanoemulsion formulation or laser alone. CONCLUSION ZnPc nanoemulsion improved antimicrobial photodynamic therapy in inactivating resistant bacterial infections and provided a promising therapeutic means of treating serious infections, and hence could be applied in diseases caused by other bacterial strains.
Collapse
|
13
|
Elkhatib MM, Ali AI, Al-badrawy AS. In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin. Biol Pharm Bull 2021; 44:251-258. [DOI: 10.1248/bpb.b20-00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mona M. Elkhatib
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University
| | | | | |
Collapse
|
14
|
Martins YA, Fonseca MJV, Pavan TZ, Lopez RFV. Bifunctional Therapeutic Application of Low-Frequency Ultrasound Associated with Zinc Phthalocyanine-Loaded Micelles. Int J Nanomedicine 2020; 15:8075-8095. [PMID: 33116519 PMCID: PMC7586016 DOI: 10.2147/ijn.s264528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Sonodynamic therapy (SDT) is a new therapeutic modality for the noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Topical SDT requires the development of delivery systems to properly transport the sonosensitizer, such as zinc phthalocyanine (ZnPc), to the skin. In addition, the delivery system itself can participate in sonodynamic events and influence the therapeutic response. This study aimed to develop ZnPc-loaded micelle to evaluate its potential as a topical delivery system and as a cavitational agent for low-frequency ultrasound (LFU) application with the dual purpose of promoting ZnPc skin penetration and generating reactive oxygen species (ROS) for SDT. Methods ZnPc-loaded micelles were developed by the thin-film hydration method and optimized using the Quality by Design approach. Micelles’ influence on LFU-induced cavitation activity was measured by potassium iodide dosimeter and aluminum foil pits experiments. In vitro skin penetration of ZnPc was assessed after pretreatment of the skin with LFU and simultaneous LFU treatment using ZnPc-loaded micelles as coupling media followed by 6 h of passive permeation of ZnPc-loaded micelles. The singlet oxygen generation by LFU irradiation of the micelles was evaluated using two different hydrophilic probes. The lipid peroxidation of the skin was estimated using the malondialdehyde assay after skin treatment with simultaneous LFU using ZnPc-loaded micelles. The viability of the B16F10 melanoma cell line was evaluated using resazurin after treatment with different concentrations of ZnPc-loaded micelles irradiated or not with LFU. Results The micelles increased the solubility of ZnPc and augmented the LFU-induced cavitation activity in two times compared to water. After 6 h ZnPc-loaded micelles skin permeation, simultaneous LFU treatment increased the amount of ZnPc in the dermis by more than 40 times, when compared to non-LFU-mediated treatment, and by almost 5 times, when compared to LFU pretreatment protocol. The LFU irradiation of micelles induced the generation of singlet oxygen, and the lipoperoxidation of the skin treated with the simultaneous LFU was enhanced in three times in comparison to the non-LFU-treated skin. A significant reduction in cell viability following treatment with ZnPc-loaded micelles and LFU was observed compared to blank micelles and non-LFU-treated control groups. Conclusion LFU-irradiated mice can be a potential approach to skin cancer treatment by combining the functions of increasing drug penetration and ROS generation required for SDT.
Collapse
Affiliation(s)
- Yugo A Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| | - Maria J V Fonseca
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| | - Theo Z Pavan
- School of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, 14090-900, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
15
|
Moarefian M, Davalos RV, Tafti DK, Achenie LE, Jones CN. Modeling iontophoretic drug delivery in a microfluidic device. LAB ON A CHIP 2020; 20:3310-3321. [PMID: 32869052 PMCID: PMC8272289 DOI: 10.1039/d0lc00602e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iontophoresis employs low-intensity electrical voltage and continuous constant current to direct a charged drug into a tissue. Iontophoretic drug delivery has recently been used as a novel method for cancer treatment in vivo. There is an urgent need to precisely model the low-intensity electric fields in cell culture systems to optimize iontophoretic drug delivery to tumors. Here, we present an iontophoresis-on-chip (IOC) platform to precisely quantify carboplatin drug delivery and its corresponding anti-cancer efficacy under various voltages and currents. In this study, we use an in vitro heparin-based hydrogel microfluidic device to model the movement of a charged drug across an extracellular matrix (ECM) and in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Transport of the drug through the hydrogel was modeled based on diffusion and electrophoresis of charged drug molecules in the direction of an oppositely charged electrode. The drug concentration in the tumor extracellular matrix was computed using finite element modeling of transient drug transport in the heparin-based hydrogel. The model predictions were then validated using the IOC platform by comparing the predicted concentration of a fluorescent cationic dye (Alexa Fluor 594®) to the actual concentration in the microfluidic device. Alexa Fluor 594® was used because it has a molecular weight close to paclitaxel, the gold standard drug for treating TNBC, and carboplatin. Our results demonstrated that a 50 mV DC electric field and a 3 mA electrical current significantly increased drug delivery and tumor cell death by 48.12% ± 14.33 and 39.13% ± 12.86, respectively (n = 3, p-value <0.05). The IOC platform and mathematical drug delivery model of iontophoresis are promising tools for precise delivery of chemotherapeutic drugs into solid tumors. Further improvements to the IOC platform can be made by adding a layer of epidermal cells to model the skin.
Collapse
Affiliation(s)
- Maryam Moarefian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|