1
|
Sarhan OM. Recent Trends in Drug Delivery Systems. Assay Drug Dev Technol 2025. [PMID: 40331698 DOI: 10.1089/adt.2025.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Drug delivery systems are now being advanced by integrating sophisticated nanotechnologies to enhance therapeutic efficacy. Tremendous advancement has been achieved in the field of cancer therapy through the utilization of hyaluronic acid-based nanocarriers, which are well-acknowledged for their capacity to transport medication precisely to targeted regions. Quantum dots exhibit unique optical properties that allow for precise drug administration and monitoring capabilities. Carbon nanotubes provide a large surface area and exceptional strength, allowing for precise manipulation of drug delivery patterns. Dendrimers are versatile structures that can transport many drugs simultaneously, whereas mesoporous silica-functionalized nanoparticles allow exact manipulation of the release rate of pharmaceuticals. Polymer-lipid hybrid nanoparticles synergistically integrate the durability of polymers with the compatibility of lipids, hence augmenting the availability of drugs within the body. Hexagonal boron nitride nanosheets are becoming more recognized as favorable carriers due to their biocompatibility and potential for tailored administration. These achievements demonstrate the changes happening in the field of pharmaceutical administration, where nanotechnology is used to tackle issues such as restricted bioavailability and unanticipated adverse effects. This ultimately enhances the effectiveness of medicines and improves patient outcomes. Future investigations will focus on improving these technologies for broader therapeutic applications.
Collapse
Affiliation(s)
- Omnia Mohamed Sarhan
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
2
|
Bao L, Qiao F, Yu N, Zhao Q, Zuo W, Yang J. Thermo-responsive in situ gel of fluticasone propionate nanosuspension modified with carboxymethyl chitosan for enhanced blepharitis therapy. Int J Biol Macromol 2025; 309:143028. [PMID: 40228770 DOI: 10.1016/j.ijbiomac.2025.143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Blepharitis (BLE) is a common eyelid inflammation with irritation and discomfort, which can lead to meibomian gland dysfunction and dry eye. However, most of the conventional eye drops for BLE have insufficient retention and poor solubility in the eyes, resulting in sub-optimal therapeutic effect. Herein, we prepared fluticasone propionate (FP) nanosuspensions (FP-NSs) modified by carboxymethyl chitosan, then a thermo-responsive in situ gel we constructed by encapsulating FP - NSs within the hydrogels matrix (SEP) synthesized from selenide (Se), Polyethylene glycol (PEG) and polypropylene glycol (PPG). Specifically, the FP nanosuspensions can improve their solubility and stability due to small particle size (274.6 ± 1.60 nm), the minimum PDI (0.267 ± 0.03) and large absolute zeta-potential value (38.17 ± 0.7 mV). FP nanosuspension-loaded thermo-responsive in situ gel (NS-SEP- G) exhibits. Temperature-sensitive sol-gel transition behavior (37 °C), a long-lasting drug release and ocular retention time via the hydrophobic interaction. In a BLE rat model, NS-SEP-G produces notable therapeutic benefits such as increasing tear secretion, reducing eyelid swelling and conjunctival capillary dilatation, inhibiting inflammatory substance infiltration and expression of inflammatory factors. Meanwhile, NS-SEP-G shows good biocompatibility in in-vitro cytotoxicity tests and eye irritation in mice. Based on this study, this paper provides a more convenient and effective drug option for the treatment of BLE.
Collapse
Affiliation(s)
- Lili Bao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan 750004, PR China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Martins F, Arada R, Barros H, Matos P, Ramalho J, Ceña V, Bonifácio VDB, Gonçalves LG, Serpa J. Lactate-coated polyurea-siRNA dendriplex: a gene therapy-directed and metabolism-based strategy to impair glioblastoma (GBM). Cancer Gene Ther 2025:10.1038/s41417-025-00906-8. [PMID: 40289180 DOI: 10.1038/s41417-025-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma (GBM) is a highly lethal disease with limited treatment options due to its infiltrative nature and the lack of efficient therapy able to cross the protective blood-brain barrier (BBB). GBMs are metabolically characterized by increased glycolysis and glutamine dependence. This study explores a novel metabolism-based therapeutic approach using a polyurea generation 4 dendrimer (PUREG4) surface functionalized with lactate (LA) (PUREG4-LA24), to take advantage of glucose-dependent monocarboxylate transporters (MCTs) overexpression, loaded with selenium-chrysin (SeChry) and temozolomide (TMZ) or complexed with anti-glutaminase (GLS1) siRNAs to abrogate glutamine dependence. The nanoparticles (PUREG4-LA24) were efficient vehicles for cytotoxic compounds delivery, since SeChry@PUREG4-LA24 and TMZ@PUREG4-LA24 induced significant cell death in GBM cell lines, particularly in U251, which exhibits higher MCT1 expression. The anti-GLS1 siRNA-dendriplex with PUREG4-LA12 (PUREG4-LA12-anti-GLS1-siRNA) knocked down GLS1 in the GBM cell lines. In two in vitro BBB models, these dendriplexes successfully crossed the BBB, decreased GLS1 expression and altered the exometabolome of GBM cell lines, concomitantly with autophagy activation. Our findings highlight the potential of targeting glucose and glutamine pathways in GBM using dendrimer-based nanocarriers, overcoming the BBB and disrupting key metabolic processes in GBM cells. PUREG4-LA12-anti-GLS1-siRNA dendriplexes cross the blood-brain barrier (BBB) and impair glioblastoma (GBM) metabolism. The BBB is formed by a thin monolayer of specialized brain microvascular endothelial cells joined together by tight junctions that selectively control the passage of substances from the blood to the brain. It is a major obstacle in the treatment of GBM, since many chemotherapeutic drugs are unable to penetrate the brain. Therefore, we developed a strategy to overcome this obstacle: a lactate-coated polyurea dendrimer generation 4 (PUREG4) able to cross the BBB in vitro, that act as a nanocarrier of drugs and siRNA to the GBM cells. PUREG4-LA12 are nanoparticles functionalized with lactate (LA) to target MCT1, a lactate transporter highly expressed by GBM cells. Moreover, a complex of this nanoparticle with anti-GLS1 (glutaminase) siRNA (PUREG4-LA12-anti-GLS1-siRNA) was made, to target glutamine metabolism. It efficiently knocked down GLS1. Moreover, PUREG4-LA24 loaded with SeChry led to BBB disruption.
Collapse
Affiliation(s)
- Filipa Martins
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Renata Arada
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - José Ramalho
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad Asociada Neurodeath, Institute of Molecular Nanoscience (INAMOL), Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - Vasco D B Bonifácio
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Jacinta Serpa
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
4
|
Bogadi S, Bhaskaran M, Ravichandran V, Nesamony J, Chelliah S, Kuppusamy G, Prakash GM, Karri VVSR, Mallick S, Farahim F, Ali T, Babu DR, Subramaniyan V. Functionalized Nanoparticles: A Promising Approach for Effective Management of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04917-2. [PMID: 40234291 DOI: 10.1007/s12035-025-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
The severe neurodegenerative disease known as Alzheimer's disease (AD) is typified by a progressive loss of memory and cognitive function. The prevalence of AD is rising due to an aging global population, calling for novel treatment strategies. A potential treatment option for AD that shows promise is the use of functionalized nanoparticles (NPs). Recent developments in the synthesis, design, and use of functionalized NPs in AD therapy are examined in this review. An outline of the pathophysiological mechanisms underlying AD is given in the first section, focusing on the roles played by tau protein aggregates and amyloid-beta plaques in the development of the illness. We then explore the many approaches used to functionalize NPs, such as surface alterations and bioconjugation methods, which enable accurate drug administration, targeted delivery, and enhanced biocompatibility. The review also emphasizes the therapeutic potential of functionalized NPs, highlighting their capacity to improve neuroprotection, lower amyloid-beta aggregation, and improve blood-brain barrier penetration. The potential of NPs as a tool for disease modification and symptom relief is highlighted by recent pre-clinical and clinical research. Concerns about toxicity and safety are also covered, underscoring the significance of thorough testing and the field's future directions. Functionalized NPs have great promise as a multimodal strategy to treat AD, offering patients hope for better quality of life, early diagnosis, and efficient disease treatment. This study highlights the growing role of nanotechnology in the search for novel and potent therapies for AD.
Collapse
Affiliation(s)
- Subhasri Bogadi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| | - Vishnuvardh Ravichandran
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX- 77004, USA
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | - Gowrav Mysore Prakash
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, OotyNilgiris, Tamil Nadu, India
| | | | - Samir Mallick
- Tennessee State University, Chemistry department, 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | - Talat Ali
- Department of Basic Medical Sciences, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences MONASH University, Subang Jaya, Malaysia
| |
Collapse
|
5
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
6
|
Saad HM, Atef E, Elsayed AE. New Insights on the Potential Role of Pyroptosis in Parkinson's Neuropathology and Therapeutic Targeting of NLRP3 Inflammasome with Recent Advances in Nanoparticle-Based miRNA Therapeutics. Mol Neurobiol 2025:10.1007/s12035-025-04818-4. [PMID: 40100493 DOI: 10.1007/s12035-025-04818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). This review aims to summarize the recent advancements in the pathophysiological mechanisms of pyroptosis, mediated by NLRP3 inflammasome, in advancing PD and the anti-pyroptotic agents that target NLRP3 inflammatory pathways and miRNA. PD pathophysiology is primarily linked to the aggregation of α-synuclein, the overproduction of reactive oxygen species (ROS), and the development of neuroinflammation due to microglial activation. Prior research indicated that a significant quantity of microglia is activated in both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models, triggering neuroinflammation and resulting in a cascade of cellular death. Microglia possess an inflammatory complex pathway termed the nucleotide-binding oligomerization domain-, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome. Activation of the NLRP-3 inflammasome results in innate cytokines maturation, including IL-18 and IL-1β, which initiates the neuroinflammatory signal and induces a type of inflammatory cell death known as pyroptosis. Upon neuronal damage, intracellular levels of damage-associated molecular patterns (DAMPs), including reactive oxygen species (ROS), would build. DAMPs induce unregulated cell death and subsequent release of oxidative intermediates and pro-inflammatory cytokines, leading to the progression of PD. Thus, targeting of neuroinflammation using antipyroptotic medications can be efficiently achieved by blocking NLRP3 and obstructing IL-1β signaling and release. Furthermore, many research studies showed that miRNAs have been identified as regulators of the NLRP3 inflammasome and Nrf2 signal, which subsequently modulate the NLRP3-Nrf2 axis in PD. Nanotechnology promises potential for the advancement of miRNA-based therapies. Nanoparticles that ensure miRNA stability, traverse the blood-brain barrier (BBB) and distribute miRNA targeting regions needed to be created. In conclusion, targeting the pyroptosis pathway via NLRP3 or miRNA may serve as a prospective therapeutic strategy for PD in the future.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Esraa Atef
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Abeer E Elsayed
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| |
Collapse
|
7
|
Shadab A, Farokhi S, Fakouri A, Mohagheghzadeh N, Noroozi A, Razavi ZS, Karimi Rouzbahani A, Zalpoor H, Mahjoor M. Hydrogel-based nanoparticles: revolutionizing brain tumor treatment and paving the way for future innovations. Eur J Med Res 2025; 30:71. [PMID: 39905470 PMCID: PMC11792566 DOI: 10.1186/s40001-025-02310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Brain tumor treatment remains a significant challenge due to their high mortality and resistance to current therapies. This paper discusses the promising potential of hydrogel-based nanoparticles as innovative drug delivery systems for brain tumor therapy. Extensive characterization techniques reveal the ability of these Nano-systems to demonstrate prolonged blood circulation and targeted delivery, leading to improved survival rates. Designed with optimized physicochemical characteristics, these nanoparticles effectively cross the blood-brain barrier, circumventing a major impediment to drug delivery to the brain. By delivering drugs directly to the tumor bed, these nanoparticles enhance therapeutic outcomes and minimize adverse effects. In addition, this review investigates the techniques for characterizing, visualizing, and modifying these nanoparticles, as well as the standing challenges and promising research avenues for their clinical application. Further investigations are encouraged by this review to investigate potential advancements in hydrogel-based nanoparticle therapeutic approaches for brain tumors. This includes investigating tailored hydrogels, hybrid systems, computational modeling, and the integration of gene therapy and immunotherapy techniques. The study also addresses the need for enhanced synthesis techniques, stability, scalability, and cost-cutting measures to overcome obstacles and advance the clinical use of hydrogel-based nanoparticles in treating brain tumors.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Mohagheghzadeh
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noroozi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
| | - Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Padti AC, Bhavi SM, Thokchom B, Singh SR, Bhat SS, Harini BP, Sillanpää M, Yarajarla RB. Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies. Neurochem Res 2025; 50:80. [PMID: 39832031 DOI: 10.1007/s11064-025-04333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Akshata Choudhari Padti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Shivanand S Bhat
- Department of Botany, Smt. Indira Gandhi Government First Grade Women's College, Sagar, Karnataka, 577401, India
| | - B P Harini
- Department of Zoology and Centre for Applied Genetics, Bangalore University, Bangaluru, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C, 8000, Denmark
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
9
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
10
|
Mohammed PN, Hussen NH, Hasan AH, Salh HJH, Jamalis J, Ahmed S, Bhat AR, Kamal MA. A review on the role of nanoparticles for targeted brain drug delivery: synthesis, characterization, and applications. EXCLI JOURNAL 2025; 24:34-59. [PMID: 39967907 PMCID: PMC11830919 DOI: 10.17179/excli2024-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025]
Abstract
Unfortunately, nowadays, brain disorders, which include both neurological and mental disorders, are the main cause of years spent living with a disability worldwide. There are serious diseases with a high prevalence and a high mortality rate. However, the outmoded technical infrastructure makes their treatment difficult. The blood-brain barrier (BBB) serves as a protective mechanism for the central nervous system (CNS) and regulates its homeostatic processes. The brain is protected against injury and illness by an extremely complex system that precisely regulates the flow of ions, very few tiny molecules, and an even smaller number of macromolecules from the blood to the brain. Nevertheless, the BBB also considerably inhibits the delivery of medications to the brain, making it impossible to treat a variety of neurological diseases. Several strategies are now being studied to enhance the transport of drugs over the BBB. According to this research, nanoparticles are one of the most promising agents for brain disease treatment while many conventional drugs are also capable of crossing this barrier but there are amazing facts about nanoparticles in brain drug delivery. For example, 1. Precision Targeting: Through mechanisms such as receptor-mediated transport, ligand attachment, or the use of external stimuli (e.g., magnetic or thermal guidance), nanoparticles can deliver drugs specifically to diseased areas of the brain while minimizing exposure to healthy tissues. This targeted approach reduces side effects and enhances therapeutic outcomes. 2. Improved Drug Stability: Drugs can be encapsulated by nanoparticles, which keeps them stable and shields them from deterioration while being transported to the brain. 3. Therapeutic Payload: Nanoparticles possess a high surface-area-to-volume ratio, enabling them to encapsulate a substantial quantity of therapeutic agents relative to their size. This allows for enhanced drug delivery efficiency, maximizing therapeutic outcomes while potentially reducing the required dosage to achieve the desired effect. 4. Imaging Properties: Certain nanoparticles can also act as contrast agents for magnetic resonance imaging (MRI), allowing for the real-time visualization of drug distribution and administration in the brain. 5. Combination Therapy Possibility: Nanoparticles can be designed to co-deliver multiple medications or therapeutic agents, which could enhance synergistic effects. There have been in vivo studies where nanoparticles were successfully used for combination therapies, demonstrating potential for personalized treatments. One notable example is in cancer treatment, where nanoparticles have been designed to co-deliver multiple chemotherapeutic agents. In general, brain medication delivery by nanoparticles is a novel strategy that has the potential to revolutionize neurological disease therapy and enhance patient outcomes. The study furthermore includes a concise depiction of the structural and physiological characteristics of the BBB, and it also provides an overview of the nanoparticles that are most often used in medicine. A brief overview of the structural and physiochemical characteristics of the NPs, as well as the most popular nanoparticles used in medicine, is also included in the review.
Collapse
Affiliation(s)
- Payam Nawzad Mohammed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region-Iraq, Iraq
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Hozan Jaza Hama Salh
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai - 600014, India
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur- 440033, India
| | - Mohammad Amjad Kamal
- Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Savar, Dhaka -1216, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Novel Global Community Educational Foundation, Australia
| |
Collapse
|
11
|
Nayak U, Halagali P, Panchal KN, Tippavajhala VK, Mudgal J, Radhakrishnan R, Manikkath J. Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. Curr Pharm Des 2025; 31:443-460. [PMID: 39318210 DOI: 10.2174/0113816128328722240828184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations. OBJECTIVE This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based CNS targeted drug delivery. METHODS An extensive literature search was conducted, comprising the initial development of nanoparticle- based CNS-targeted drug delivery approaches to the latest advancements using various online search tools. RESULTS The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the BBB during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here. CONCLUSION Important properties and pathways that determine the penetration of nanoparticles across the CNS are reviewed in this article, along with recent advances in the field.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Khushi N Panchal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S102TA, UK
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
12
|
Dash R, Samanta S, Jena BR, Pradhan S. Nanotechnology in Drug Delivery: An Overview of Developing the Blood Brain Barrier. Curr Neurovasc Res 2025; 21:347-358. [PMID: 39411960 DOI: 10.2174/0115672026346307240919112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 02/27/2025]
Abstract
The close connection between the brain microvascular endothelial cells (BMECs) that are enclosed within this barrier is the result of an intracellular junction, which is responsible for the constricted connection. The regulation and control of drug delivery systems both require nanoparticles, which are extremely small particles made up of a variety of materials, including polymers, metals, and other chemicals. Nanoparticles are a crucial component of the regulation and control of drug delivery systems. There is a possibility that nanomaterials composed of inorganic chemicals, such as gold nanoparticles, could be utilized in the treatment of neurodegenerative illnesses like Parkinson's disease. In addition to this, they are used as nano-carriers for the aim of distributing drugs to the region of the brain that is being targeted. There are a number of advantages that are easily apparent when compared to other methods of administering drugs for neurological diseases. The current review demonstrates both the advantages and disadvantages of utilizing a wide variety of nanomaterials for brain delivery, as well as the potential impact that this will have in the future on the safety and effectiveness of patient care.
Collapse
Affiliation(s)
- Rasmita Dash
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Subhankar Samanta
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Soumyaranjan Pradhan
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
14
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
15
|
Baiomy RFES. Quercetin nanoparticles as a therapeutic approach: pharmacological actions and potential applications in therapy. BIOTECHNOLOGIA 2024; 105:377-393. [PMID: 39844873 PMCID: PMC11748223 DOI: 10.5114/bta.2024.145258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 01/24/2025] Open
Abstract
The utilization of quercetin nanoparticles as a novel therapeutic strategy has garnered significant attention in recent years. These nanoparticles offer a unique approach to enhancing delivery and effectiveness while overcoming the drawbacks of quercetin. By exploiting the advantages of nanotechnology, such as increased stability and improved bioavailability, quercetin nanoparticles hold significant potential for developing innovative treatments across various medical fields. Quercetin nanoparticles have emerged as an indispensable component in numerous pharmaceutical and medicinal formulations. They are recognized for their anticancer, antitumor, anti-inflammatory, and antidiabetic properties, making them valuable in addressing allergic reactions, metabolic disorders, inflammatory disorders, cardiovascular diseases, and arthritis. From a pharmacological perspective, quercetin nanoparticles have demonstrated beneficial effects against Alzheimer's disease, primarily through their inhibitory impact on acetylcholinesterase. Furthermore, these nanoparticles have been scientifically documented to possess antioxidant, anticarcinogenic, hepatoprotective, and cytotoxic activities. This comprehensive review aims to explore the pharmacokinetics and biological activities associated with quercetin nanoparticles. It also highlights their potential as therapeutic agents in treating a wide range of diseases, including Alzheimer's disease, cancer, and neurodegenerative disorders.
Collapse
|
16
|
Nanda SS, Yi DK. Exploring the Connection Between Nanomaterials and Neurodegenerative Disorders. MICROMACHINES 2024; 15:1382. [PMID: 39597194 PMCID: PMC11596582 DOI: 10.3390/mi15111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery, tissue engineering, and cell promotion in biomedical fields heavily rely on the use of nanomaterials (NMs). When they penetrate cells, NPs undergo degradation and initiate the generation of reactive oxygen species (ROS) by causing changes in the structures of organelles linked to mitochondria. Inside the cell, the excess production of ROS can initiate a chain reaction, along with the autophagy process that helps maintain ROS balance by discarding unnecessary materials. At present, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disease. The use of NMs for siRNA delivery could become a promising treatment for AD and other CNS disorders. Recent research demonstrates that the use of combined NPs can induce autophagy in cells. This article emphasizes the importance of the shape of siRNA-encapsulated NMs in determining their efficiency in delivering and suppressing gene activity in the central nervous system. Because of its strict selectivity against foreign substances, the blood-brain barrier (BBB) significantly hinders the delivery of therapeutic agents to the brain. Conventional chemotherapeutic drugs are significantly less effective against brain cancers due to this limitation. As a result, NMs have become a promising approach for targeted drug delivery, as they can be modified to carry specific ligands that direct them to their intended targets. This review thoroughly examines the latest breakthroughs in using NMs to deliver bioactive compounds across the BBB, focusing on their use in cancer treatments. The review starts by examining the structure and functions of the BBB and BBTB, and then emphasizes the benefits that NMs offer.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
17
|
Naser SS, Gupta A, Choudhury A, Yadav A, Sinha A, Kirti A, Singh D, Kujawska M, Kaushik NK, Ghosh A, De S, Verma SK. Biophysical translational paradigm of polymeric nanoparticle: Embarked advancement to brain tumor therapy. Biomed Pharmacother 2024; 179:117372. [PMID: 39208668 DOI: 10.1016/j.biopha.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric nanoparticles have emerged as promising contenders for addressing the intricate challenges encountered in brain tumor therapy due to their distinctive attributes, including adjustable size, biocompatibility, and controlled drug release kinetics. This review comprehensively delves into the latest developments in synthesizing, characterizing, and applying polymeric nanoparticles explicitly tailored for brain tumor therapy. Various synthesis methodologies, such as emulsion polymerization, nanoprecipitation, and template-assisted fabrication, are scrutinized within the context of brain tumor targeting, elucidating their advantages and limitations concerning traversing the blood-brain barrier. Furthermore, strategies pertaining to surface modification and functionalization are expounded upon to augment the stability, biocompatibility, and targeting prowess of polymeric nanoparticles amidst the intricate milieu of the brain microenvironment. Characterization techniques encompassing dynamic light scattering, transmission electron microscopy, and spectroscopic methods are scrutinized to evaluate the physicochemical attributes of polymeric nanoparticles engineered for brain tumor therapy. Moreover, a comprehensive exploration of the manifold applications of polymeric nanoparticles encompassing drug delivery, gene therapy, imaging, and combination therapies for brain tumours is undertaken. Special emphasis is placed on the encapsulation of diverse therapeutics within polymeric nanoparticles, thereby shielding them from degradation and enabling precise targeting within the brain. Additionally, recent advancements in stimuli-responsive and multifunctional polymeric nanoparticles are probed for their potential in personalized medicine and theranostics tailored for brain tumours. In essence, this review furnishes an all-encompassing overview of the recent strides made in tailoring polymeric nanoparticles for brain tumor therapy, illuminating their synthesis, characterization, and multifaceted application.
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Deobrat Singh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata 700125, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
18
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Srinageshwar B, Thompson C, Otero P, Story DT, Wedster AE, MacDonald B, Munro N, Koneru S, Crandall R, Swanson D, Sharma A, Dunbar GL, Rossignol J. Unilateral Administration of Surface-Modified G1 and G4 PAMAM Dendrimers in Healthy Mice to Assess Dendrimer Migration in the Brain. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41907-41915. [PMID: 39083440 PMCID: PMC11331434 DOI: 10.1021/acsami.4c09137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH2) are highly toxic to cells in vitro and in vivo due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH2 and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous in vitro data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells in vitro and neurons and glial cells in vivo. The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.
Collapse
Affiliation(s)
- Bhairavi Srinageshwar
- College
of Medicine, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Cassandra Thompson
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Paulina Otero
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Darren T. Story
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Department
of Psychology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Department
of Psychology, Saginaw Valley State University, University Center, Michigan 48710, United States
| | - Anna E. Wedster
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Bethany MacDonald
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nikolas Munro
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Sindhuja Koneru
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Riley Crandall
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Douglas Swanson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount Pleasant, Michigan 48859, United States
| | - Ajit Sharma
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount Pleasant, Michigan 48859, United States
| | - Gary L. Dunbar
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Department
of Psychology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Julien Rossignol
- College
of Medicine, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Program
of Neuroscience, Central Michigan University, Mount Pleasant, Michigan 48859, United States
- Field
Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
20
|
Miao K, Xia X, Zou Y, Shi B. Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases. Mol Pharm 2024; 21:3777-3799. [PMID: 39038108 DOI: 10.1021/acs.molpharmaceut.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kaiting Miao
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xue Xia
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
21
|
Madeshwaran A, Vijayalakshmi P, Umapathy VR, Shanmugam R, Selvaraj C. Unlocking estrogen receptor: Structural insights into agonists and antagonists for glioblastoma therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:1-24. [PMID: 39059983 DOI: 10.1016/bs.apcsb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Glioblastoma (GBM), a malignant brain tumor originating in glial cells, is one of the most common primary brain malignancies, affecting one in 100,000 people, typically in the frontal lobe. Estrogens, like estradiol-17 (E2), significantly influence GBM progression, metastasis, and angiogenesis. Estrogen receptors (ERs) are crucial in signal transduction and physiology, making them potential therapeutic targets. However, their roles in GBM pathogenesis remain unclear. This review explores ERs in GBM, focusing on their involvement in tumor immune evasion, modulation of the tumor microenvironment, and the mechanisms underlying GBM progression. Additionally, therapeutic opportunities targeting ERs for GBM treatment are discussed. Estrogen, synthesized primarily in ovaries and in smaller amounts by adrenal glands and fat tissues, regulates reproductive systems, bone density, skin health, and cardiovascular function. The invasive nature and heterogeneity of GBM complicate therapy development. Preclinical findings suggest that endocrine therapy with hormone receptor agonists or antagonists can extend patient survival and improve post-treatment quality of life. The ERβ pathway, in particular, shows tumor-suppressive potential, limiting glioma progression with fewer side effects. ERβ agonists could become a novel drug class for GBM treatment. Identifying biomarkers and specific therapeutic targets is crucial for early detection and improved prognosis. Estrogen and its receptors are advantageous for GBM treatment due to their regulation of numerous biological processes, ability to penetrate the blood-brain barrier, and genomic and non-genomic control of transcription, making them promising targets for GBM therapy.
Collapse
Affiliation(s)
- Asokan Madeshwaran
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Periyasamy Vijayalakshmi
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Rajeshkumar Shanmugam
- Nano Biomedicine Lab, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD LAB, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
23
|
Yin P, Wang X. Progresses in the establishment, evaluation, and application of in vitro blood-brain barrier models. J Neurosci Res 2024; 102:e25359. [PMID: 38859680 DOI: 10.1002/jnr.25359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The blood-brain barrier (BBB) is a barrier between the circulatory system and the central nervous system (CNS), contributing to CNS protection and maintaining the brain homeostasis. Establishment of in vitro BBB models that are closer to the microenvironment of the human brain is helpful for evaluating the potential and efficiency of a drug penetrating BBB and thus the clinical application value of the drug. The in vitro BBB models not only provide great convenience for screening new drugs that can access to CNS but also help people to have a deeper study on the mechanism of substances entering and leaving the brain, which makes people have greater opportunities in the treatment of CNS diseases. Up to now, although much effort has been paid to the researches on the in vitro BBB models and many progresses have been achieved, no unified method has been described for establishing a BBB model and there is much work to do and many challenges to be faced with in the future. This review summarizes the research progresses in the establishment, evaluation, and application of in vitro BBB models.
Collapse
Affiliation(s)
- Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
24
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
25
|
Liao W, Lu Z, Wang C, Zhu X, Yang Y, Zhou Y, Gong P. Application and advances of biomimetic membrane materials in central nervous system disorders. J Nanobiotechnology 2024; 22:280. [PMID: 38783302 PMCID: PMC11112845 DOI: 10.1186/s12951-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Central nervous system (CNS) diseases encompass spinal cord injuries, brain tumors, neurodegenerative diseases, and ischemic strokes. Recently, there has been a growing global recognition of CNS disorders as a leading cause of disability and death in humans and the second most common cause of death worldwide. The global burdens and treatment challenges posed by CNS disorders are particularly significant in the context of a rapidly expanding global population and aging demographics. The blood-brain barrier (BBB) presents a challenge for effective drug delivery in CNS disorders, as conventional drugs often have limited penetration into the brain. Advances in biomimetic membrane nanomaterials technology have shown promise in enhancing drug delivery for various CNS disorders, leveraging properties such as natural biological surfaces, high biocompatibility and biosafety. This review discusses recent developments in biomimetic membrane materials, summarizes the types and preparation methods of these materials, analyzes their applications in treating CNS injuries, and provides insights into the future prospects and limitations of biomimetic membrane materials.
Collapse
Affiliation(s)
- Weiquan Liao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu, 226001, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
26
|
Gong Z, Kang G, Shi R, Jiang X, Rong X, Du X, Wu J, Huang H, Meng S. Intermolecular Interaction Between BODIPY and TPE Enhances Phototherapy. ADVANCED OPTICAL MATERIALS 2024; 12. [DOI: 10.1002/adom.202303033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 03/05/2025]
Abstract
AbstractFluoroborodipyrrole (BODIPY) and Tetraphenylethylene (TPE) are well‐known molecules in the realm of optical materials, celebrated for their exceptional properties. Recent research increasingly focuses on their combined use. In this study, a novel non‐synthetic method is taken to harness the synergistic therapeutic potential stemming from intermolecular interactions by employing nanoparticle encapsulation and core–shell structure. In vitro and in vivo experiments results show that the nanoparticles encapsulating BODIPY and TPE exhibit low cytotoxicity, efficient antitumor properties, and excellent visualization, achieving remarkable 1+1>2 effects. This innovative method not only provides high therapeutic efficacy, but also reduces time and economic costs, providing a novel perspective for exploring the combination of BODIPY and TPE as well as similar molecules in the field of optical materials.
Collapse
Affiliation(s)
- Zhichao Gong
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Guangbo Kang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Ruijie Shi
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xu Jiang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xuejiao Rong
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xiaobing Du
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province College of Pharmacy Qinghai Nationalities University Xining 810007 P. R. China
| | - He Huang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Shuxian Meng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| |
Collapse
|
27
|
Alexander KK, Naaldijk Y, Fasiczka R, Brahmia B, Chen T, Hilfiker S, Kennedy EJ. Targeting Rab-RILPL interactions as a strategy to downregulate pathogenic LRRK2 in Parkinson's disease. J Pept Sci 2024; 30:e3563. [PMID: 38135900 DOI: 10.1002/psc.3563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Familial Parkinson's disease (PD) is frequently linked to multiple disease-causing mutations within Leucine-Rich Repeat Protein Kinase 2 (LRRK2), leading to aberrant kinase activity. Multiple pathogenic effects of enhanced LRRK2 activity have been identified, including loss of cilia and centrosomal cohesion defects. When phosphorylated by LRRK2, Rab8a and Rab10 bind to phospho-specific RILPL effector proteins. RILPL-mediated accumulation of pRabs proximal to the mother centriole is critical for initiating deficits in ciliogenesis and centrosome cohesion mediated by LRRK2. We hypothesized that Rab-derived phospho-mimics may serve to block phosphorylated Rab proteins from docking with RILPL in the context of hyperactive LRRK2 mutants. This would serve as an alternative strategy to downregulate pathogenic signaling mediated by LRRK2, rather than targeting LRRK2 kinase activity itself. To test this theory, we designed a series of constrained peptides mimicking phosphorylated Switch II derived from Rab8. These RILPL interacting peptides, termed RIP, were further shown to permeate cells. Further, several peptides were found to bind RILPL2 and restore ciliogenesis and centrosomal cohesion defects in cells expressing PD-associated mutant LRRK2. This research demonstrates the utility of constrained peptides as downstream inhibitors to target pathogenic LRRK2 activity and may provide an alternative approach to target specific pathways activated by LRRK2.
Collapse
Affiliation(s)
- Krista K Alexander
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yahaira Naaldijk
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Rachel Fasiczka
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Besma Brahmia
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tiancheng Chen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells. Nat Rev Immunol 2024; 24:326-337. [PMID: 38040953 DOI: 10.1038/s41577-023-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Emanuela Pasciuto
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Center for Molecular Neurology, VIB, Antwerp, Belgium.
| | - Denise C Fitzgerald
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Hill M, Chung SJ, Woo HJ, Park CR, Hadrick K, Nafiujjaman M, Kumar PP, Mwangi L, Parikh R, Kim T. Exosome-Coated Prussian Blue Nanoparticles for Specific Targeting and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38598311 PMCID: PMC11056931 DOI: 10.1021/acsami.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Glioblastoma is one of the most aggressive and invasive types of brain cancer with a 5-year survival rate of 6.8%. With limited options, patients often have poor quality of life and are moved to palliative care after diagnosis. As a result, there is an extreme need for a novel theranostic method that allows for early diagnosis and noninvasive treatment as current peptide-based delivery standards may have off-target effects. Prussian Blue nanoparticles (PBNPs) have recently been investigated as photoacoustic imaging (PAI) and photothermal ablation agents. However, due to their inability to cross the blood-brain barrier (BBB), their use in glioblastoma treatment is limited. By utilizing a hybrid, biomimetic nanoparticle composed of a PBNP interior and a U-87 cancer cell-derived exosome coating (Exo:PB), we show tumor-specific targeting within the brain and selective thermal therapy potential due to the strong photoconversion abilities. Particle characterization was carried out and showed a complete coating around the PBNPs that contains exosome markers. In vitro cellular uptake patterns are similar to native U-87 exosomes and when exposed to an 808 nm laser, show localized cell death within the specified region. After intravenous injection of Exo:PB into subcutaneously implanted glioblastoma mice, they have shown effective targeting and eradication of tumor volume compared to PEG-coated PBNPs (PEG:PB). Through systemic administration of Exo:PB particles into orthotopic glioblastoma-bearing mice, the PBNP signal was detected in the brain tumor region through PAI. It was seen that Exo:PB had preferential tumor accumulation with less off-targeting compared to the RGD:PB control. Ex vivo analysis validated specific targeting with a direct overlay of Exo:PB with the tumor by both H&E staining and Ki67 labeling. Overall, we have developed a novel biomimetic material that can naturally cross the BBB and act as a theranostic agent for systemic targeting of glioblastoma tissue and photothermal therapeutic effect.
Collapse
Affiliation(s)
- Meghan
L. Hill
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Seock-Jin Chung
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Hyun-Joo Woo
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Cho Rong Park
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Panangattukara
Prabhakaran Praveen Kumar
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Leila Mwangi
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Rachna Parikh
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
31
|
Jain U, Johari S, Srivastava P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer's Disease. Mol Neurobiol 2024; 61:1969-1989. [PMID: 37831361 DOI: 10.1007/s12035-023-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood-brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer's disease.
Collapse
Affiliation(s)
- Unnati Jain
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
32
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
33
|
Unnithan D, Sartaj A, Iqubal MK, Ali J, Baboota S. A neoteric annotation on the advances in combination therapy for Parkinson's disease: nanocarrier-based combination approach and future anticipation. Part II: nanocarrier design and development in focus. Expert Opin Drug Deliv 2024; 21:437-456. [PMID: 38507231 DOI: 10.1080/17425247.2024.2331216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.
Collapse
Affiliation(s)
- Devika Unnithan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
34
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
35
|
Peplow PV. Animal models in medical translation: the grand challenge of developing new treatments for human diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1367521. [PMID: 38435848 PMCID: PMC10904654 DOI: 10.3389/fmedt.2024.1367521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Ezzati S, Salib S, Balasubramaniam M, Aboud O. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int J Mol Sci 2024; 25:2316. [PMID: 38396993 PMCID: PMC10889328 DOI: 10.3390/ijms25042316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, a grade 4 glioma as per the World Health Organization, poses a challenge in adult primary brain tumor management despite advanced surgical techniques and multimodal therapies. This review delves into the potential of targeting epidermal growth factor receptor (EGFR) with small-molecule inhibitors and antibodies as a treatment strategy. EGFR, a mutationally active receptor tyrosine kinase in over 50% of glioblastoma cases, features variants like EGFRvIII, EGFRvII and missense mutations, necessitating a deep understanding of their structures and signaling pathways. Although EGFR inhibitors have demonstrated efficacy in other cancers, their application in glioblastoma is hindered by blood-brain barrier penetration and intrinsic resistance. The evolving realm of nanodrugs and convection-enhanced delivery offers promise in ensuring precise drug delivery to the brain. Critical to success is the identification of glioblastoma patient populations that benefit from EGFR inhibitors. Tools like radiolabeled anti-EGFR antibody 806i facilitate the visualization of EGFR conformations, aiding in tailored treatment selection. Recognizing the synergistic potential of combination therapies with downstream targets like mTOR, PI3k, and HDACs is pivotal for enhancing EGFR inhibitor efficacy. In conclusion, the era of precision oncology holds promise for targeting EGFR in glioblastoma, contingent on tailored treatments, effective blood-brain barrier navigation, and the exploration of synergistic therapies.
Collapse
Affiliation(s)
- Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | - Samuel Salib
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | | | - Orwa Aboud
- Department of Neurology, Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
37
|
Li FR, Yu Y, Du YM, Kong L, Liu Y, Wang JH, Chen MH, Liu M, Zhang ZX, Li XT, Ju RJ. Borneol-Modified Schisandrin B Micelles Cross the Blood-Brain Barrier To Treat Alzheimer's Disease in Aged Mice. ACS Chem Neurosci 2024; 15:593-607. [PMID: 38214579 DOI: 10.1021/acschemneuro.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Feng-Rui Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yu-Meng Du
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| |
Collapse
|
38
|
Heidarzadeh M, Amininasab M, Rezayat SM, Mousavi SE. Investigation of Antioxidant and Anti-inflammatory Properties of Berberine Nanomicelles: In vitro and In vivo Studies. Curr Drug Deliv 2024; 21:1273-1283. [PMID: 37815182 DOI: 10.2174/0115672018258030230920035222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 08/04/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION In the present study, neuroprotective effects of berberine (BBR) and berberine nanomicelle (BBR-NM) against lipopolysaccharides (LPS)-induced stress oxidative were investigated, and compared by evaluating their antioxidant and anti-inflammatory activities in PC12 cells, and rat brains. A fast, green, and simple synthesis method was used to prepare BBR-NMs. METHOD The prepared BBR-NMs were then characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In vitro experiments were carried out on the LPS-treated PC12 cell lines to investigate the anti-cytotoxic and antioxidant properties of BBR-NM and BBR. The results showed that BBR-NMs with a diameter of ~100 nm had higher protective effects against ROS production and cytotoxicity induced by LPS in PC12 cells in comparison with free BBR. RESULTS Moreover, in vivo experiments indicated that the activity levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), increased in the brain of LPS-treated rats administrated with BBR-NM at the optimum dose of 100 mg.kg-1. BBR-NM administration also resulted in decreased concentration of lipid peroxidation (MDA) and pro-inflammatory cytokines, such as Serum interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). CONCLUSION Overall, BBR-NM demonstrated higher neuroprotective effects than free BBR, making it a promising treatment for improving many diseases caused by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Marjan Heidarzadeh
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Ozolmez N, Silindir-Gunay M, Volkan-Salanci B. An overview: Radiotracers and nano-radiopharmaceuticals for diagnosis of Parkinson's disease. Appl Radiat Isot 2024; 203:111110. [PMID: 37989065 DOI: 10.1016/j.apradiso.2023.111110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Parkinson's disease (PD) is a widespread progressive neurodegenerative disease. Clinical diagnosis approaches are insufficient to provide an early and accurate diagnosis before a substantial of loss of dopaminergic neurons. PET and SPECT can be used for accurate and early diagnosis of PD by using target-specific radiotracers. Additionally, the importance of BBB penetrating targeted nanosystems has increased in recent years. This article reviews targeted radiopharmaceuticals used in clinics and novel nanocarriers for research purposes of PD imaging.
Collapse
Affiliation(s)
- Nur Ozolmez
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Mine Silindir-Gunay
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Bilge Volkan-Salanci
- Hacettepe University, Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey.
| |
Collapse
|
41
|
Chandrasekhar P, Kaliyaperumal R. Revolutionizing Brain Drug Delivery: Buccal Transferosomes on the Verge of a Breakthrough. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:262-275. [PMID: 39356098 DOI: 10.2174/0126673878312336240802113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
The buccal cavity, also known as the oral cavity, is a complex anatomical structure that plays a crucial role in various physiological processes. It serves as a gateway to the digestive system and facilitates the initial stages of food digestion and absorption. However, its significance extends beyond mere digestion as it presents a promising route for drug delivery, particularly to the brain. Transferosomes are lipid-based vesicles that have gained significant attention in the field of drug delivery due to their unique structure and properties. These vesicles are composed of phospholipids that form bilayer structures capable of encapsulating both hydrophilic and lipophilic drugs. Strategies for the development of buccal transferosomes for brain delivery have emerged as promising avenues for pharmaceutical research. This review aims to explore the various approaches and challenges associated with harnessing the potential of buccal transferosomes as a means of enhancing drug delivery to the brain. By understanding the structure and function of both buccal tissue and transferosomes, researchers can develop effective formulation methods and characterization techniques to optimize drug delivery. Furthermore, strategic approaches and success stories in buccal transferosome development are highlighted, showcasing inspiring examples that demonstrate their potential to revolutionize brain delivery.
Collapse
Affiliation(s)
- Pavuluri Chandrasekhar
- Department of Pharmaceutics, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Rajaganapathy Kaliyaperumal
- Department of Pharmacology, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
42
|
Kapoor A, Hafeez A, Kushwaha P. Nanocarrier Mediated Intranasal Drug Delivery Systems for the Management of Parkinsonism: A Review. Curr Drug Deliv 2024; 21:709-725. [PMID: 37365787 DOI: 10.2174/1567201820666230523114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
The transport of drugs to the brain becomes a key concern when treating disorders of the central nervous system. Parkinsonism is one of the major concerns across the world populations, which causes difficulty in coordination and balance. However, the blood-brain barrier is a significant barrier to achieving optimal brain concentration through oral, transdermal, and intravenous routes of administration. The intranasal route with nanocarrier-based formulations has shown potential for managing Parkinsonism disorder (PD). Direct delivery to the brain through the intranasal route is possible via the olfactory and trigeminal pathways using drug-loaded nanotechnology-based drug delivery systems. The critical analysis of reported works demonstrates dose reduction, brain targeting, safety, effectiveness, and stability for drug-loaded nanocarriers. The important aspects of intranasal drug delivery, PD details, and nanocarrier-based intranasal formulations in PD management with a discussion of physicochemical characteristics, cell line studies, and animal studies are the major topics in this review. Patent reports and clinical investigations are summarized in the last sections.
Collapse
Affiliation(s)
- Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India Lucknow India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| |
Collapse
|
43
|
Guru A, Murugan R, Almutairi BO, Arokiyaraj S, Arockiaraj J. Brain targeted luteolin-graphene oxide nanoparticle abrogates polyethylene terephthalate induced altered neurological response in zebrafish. Mol Biol Rep 2023; 51:27. [PMID: 38133875 DOI: 10.1007/s11033-023-08960-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, 05006, Seoul, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
44
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
45
|
Poulios C, Karagkiozaki V, Kapoukranidou D, Chakim Z, Zarampoukas T, Foroglou N, Logothetidis S. Bringing pathology to nanomedicine: a comparison of in vivo toxicity of polymeric nanoparticle carriers with and without chitosan coating. Virchows Arch 2023; 483:775-786. [PMID: 37402995 DOI: 10.1007/s00428-023-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Over the last years, there has been an increasing number of proposals for the use of nanomaterials in medicine. The safety of novel technologies must be verified, prior to their clinical application. Pathology has much to contribute towards this end. In this study, we compared the in vivo toxicity effects of poly- (lactic-co-glycolic acid) nanoparticles with and without chitosan shell. Both nanoparticle types were loaded with curcumin. The nanoparticles were assessed in vitro for potential cytotoxicity with cell viability studies. For the in vivo test, 36 adult Wistar rats were used, four of which were the control group. The remaining 32 were divided into 2 groups, each of which was administered differentially coated drug carriers: (A) nanoparticles without chitosan coating and (B) nanoparticles with chitosan coating. For both groups, the subcutaneous route was used for administration. Each group was further divided into 2 sub-groups of 8 animals each. The animals of the first sub-groups were sacrificed 24 h after the injection and those of the second on the 7th day. The control group was also divided into 2 subgroups of 2 animals each. At the appointed post-administrative date, the rats were sacrificed, and specimens from the brain, liver, kidneys, heart, stomach, lungs, and from the skin at the injection site were collected and studied histopathologically. The evaluation of both in vitro and in vivo testing shows that nanoparticles with chitosan have significantly less, if any, toxic effects compared to those without chitosan.
Collapse
Affiliation(s)
- Christos Poulios
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- European Society of Pathology, Brussels, Belgium.
| | - Varvara Karagkiozaki
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BL NanoBiomed, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zena Chakim
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BL NanoBiomed, Thessaloniki, Greece
| | - Thomas Zarampoukas
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Logothetidis
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
46
|
Fernandez M, Nigro M, Travagli A, Pasquini S, Vincenzi F, Varani K, Borea PA, Merighi S, Gessi S. Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy. Pharmaceutics 2023; 15:2441. [PMID: 37896201 PMCID: PMC10610137 DOI: 10.3390/pharmaceutics15102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | | | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| |
Collapse
|
47
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
48
|
Fu JY, Meganathan P, Gunasegaran N, Tan DMY. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols. Food Res Int 2023; 171:113048. [PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
Collapse
Affiliation(s)
- Ju-Yen Fu
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Puvaneswari Meganathan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nisanthei Gunasegaran
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Doryn Meam Yee Tan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
49
|
Ribeiro J, Lopes I, Gomes AC. A New Perspective for the Treatment of Alzheimer's Disease: Exosome-like Liposomes to Deliver Natural Compounds and RNA Therapies. Molecules 2023; 28:6015. [PMID: 37630268 PMCID: PMC10458935 DOI: 10.3390/molecules28166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increment of the aging population in recent years, neurodegenerative diseases exert a major global disease burden, essentially as a result of the lack of treatments that stop the disease progression. Alzheimer's Disease (AD) is an example of a neurodegenerative disease that affects millions of people globally, with no effective treatment. Natural compounds have emerged as a viable therapy to fill a huge gap in AD management, and in recent years, mostly fueled by the COVID-19 pandemic, RNA-based therapeutics have become a hot topic in the treatment of several diseases. Treatments of AD face significant limitations due to the complex and interconnected pathways that lead to their hallmarks and also due to the necessity to cross the blood-brain barrier. Nanotechnology has contributed to surpassing this bottleneck in the treatment of AD by promoting safe and enhanced drug delivery to the brain. In particular, exosome-like nanoparticles, a hybrid delivery system combining exosomes and liposomes' advantageous features, are demonstrating great potential in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Joana Ribeiro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
50
|
Zhu R, Makwana KM, Zhang Y, Rajewski BH, Del Valle JR, Wang Y. Blocking tau transmission by biomimetic graphene nanoparticles. J Mater Chem B 2023; 11:7378-7388. [PMID: 37431684 PMCID: PMC10528742 DOI: 10.1039/d3tb00850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology. Although numerous small molecules are known to inhibit tau aggregation and block tau cell-to-cell transmission, it is still challenging to use them for therapeutic applications due to poor specificity and low blood-brain barrier (BBB) penetration. Graphene nanoparticles were previously demonstrated to penetrate the BBB and are amenable to functionalization for targeted delivery. Moreover, these nanoscale biomimetic particles can self-assemble or assemble with various biomolecules including proteins. In this paper, we show that graphene quantum dots (GQDs), as graphene nanoparticles, block the seeding activity of tau fibrils by inhibiting the fibrillization of monomeric tau and triggering the disaggregation of tau filaments. This behavior is attributed to electrostatic and π-π stacking interactions of GQDs with tau. Overall, our studies indicate that GQDs with biomimetic properties can efficiently inhibit and disassemble pathological tau aggregates, and thus block tau transmission, which supports their future developments as a potential treatment for tauopathies.
Collapse
Affiliation(s)
- Runyao Zhu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| | - Kamlesh M Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Youwen Zhang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| | - Benjamin H Rajewski
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Indiana 46556, USA.
| |
Collapse
|