1
|
Fang L, Zhang Y, Cheng L, Zheng H, Wang Y, Qin L, Cai Y, Cheng L, Zhou W, Liu F, Wang S. Silica nanoparticles containing nano-silver and chlorhexidine to suppress Porphyromonas gingivalis biofilm and modulate multispecies biofilms toward healthy tendency. J Oral Microbiol 2024; 16:2361403. [PMID: 38847000 PMCID: PMC11155433 DOI: 10.1080/20002297.2024.2361403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm. Methods Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis). Results nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h. Conclusions nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.
Collapse
Affiliation(s)
- Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yishuang Zhang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Long Cheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lu Qin
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingchun Cai
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Wen Zhou
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, Fuzhou, China
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Lima RA, de Souza SLX, Lima LA, Batista ALX, de Araújo JTC, Sousa FFO, Rolim JPML, Bandeira TDJPG. Antimicrobial effect of anacardic acid-loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol 2020; 51:1623-1630. [PMID: 32562202 DOI: 10.1007/s42770-020-00320-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial biofilms play a key role in the pathogenesis of major oral diseases. Nanoparticles open new paths for drug delivery in complex structures such as biofilms. This study evaluated the antimicrobial effect of zein nanoparticles containing anacardic acid (AA) extracted from cashew shells of Anacardium occidentale on in vitro Streptococcus mutans biofilm formation and mature biofilms. The minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and antibiofilm assays were performed. Streptococcus mutans UA159 biofilms were formed on saliva-coated hydroxyapatite disk for 5 days. To evaluate the preventive effect on biofilm formation, before contact with the inoculum, the disks were immersed once for 2 min in (1) hydroethanolic solution; (2) blank zein nanoparticles; (3) zein nanoparticles containing AA; and (4) 0.12% chlorhexidine gluconate. To determine the effect against mature biofilms, the disks containing 5-day preformed biofilms were further treated using the same procedure. The bacterial viability and dry weight were determined for both assays and used to compare the groups using ANOVA followed by Tukey's test (p < 0.05). Both MIC and MBC for AA-loaded zein nanoparticles were 0.36 μg/mL. Groups 3 and 4 were very effective in inhibiting S. mutans biofilm formation, as no colony-forming units were detected. In contrast, for mature biofilms, no difference in bacterial viability (p = 0.28) or dry weight (p = 0.09) was found between the treatments. Therefore, the AA-based nanoformulation presented very high inhibitory and bactericidal activities against planktonic S. mutans, and the results indicate a strong antiplaque effect. However, the formulation showed no antimicrobial effect on the established biofilm.
Collapse
Affiliation(s)
- Ramille Araújo Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | - Lais Aragão Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | - Ana Larissa Ximenes Batista
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | | | | | | |
Collapse
|
3
|
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6853652. [PMID: 32258136 PMCID: PMC7086434 DOI: 10.1155/2020/6853652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Objective To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels. Methods The disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. The minimal inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. Results The diameter (10.18 ± 1.744 mm) of inhibition zones formed by GERM CLEAN preliminarily indicated its inhibitory effect on the major cariogenic bacteria S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and this was consistent with our phenotypic results. Conclusion The novel antimicrobial peptide containing oral spray GERM CLEAN has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.S. mutans was determined by the broth dilution method.
Collapse
|
4
|
Binshabaib M, Aabed K, Alotaibi F, Alwaqid M, Alfraidy A, Alharthi S. Antimicrobial efficacy of 0.8% Hyaluronic Acid and 0.2% Chlorhexidine against Porphyromonas gingivalis strains: An in-vitro study. Pak J Med Sci 2020; 36:111-114. [PMID: 32063942 PMCID: PMC6994868 DOI: 10.12669/pjms.36.2.1456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The aim of the present in-vitro study was to assess antimicrobial efficacy of 0.8% hyaluronic acid (HA) and 0.2% Chlorhexidine gluconate (CHX) against Porphyromonas gingivalis (P. gingivalis). Methods: The study was performed between December 2018 and March 2019 at the College of Dentistry at the Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. The P. gingivalis biofilms were formed and grown for 72 hours at 37°C under anaerobic conditions on glass slides coated with human saliva. The slides were individually positioned and exposed to 0.8% HA or 0.2% CHX. Therapeutically, the biofilms were divided into 3 groups as follows: (a) negative group; (b) 0.8% HA group and (c) 0.2% CHX group. P-values less than 0.05 were considered statistically significant. Results: In the 0.8% HA group, P. gingivalis CFUs/ml were significantly higher at baseline than at 24- (P<0.05), 48 (P<0.05) and 72 hours (P<0.05) intervals. In the 0.2% CHX group, P. gingivalis CFUs/ml were significantly higher at baseline than at 72 hours interval (P<0.05). In the CHX group, there was no difference in P. gingivalis CFUs/ml between baseline, 24- and 48-hours intervals. At 48- and 72-hours intervals, the P. gingivalis CFUs/ml were significantly higher in the 0.2% CHX group compared with the 0.8% HA group. Conclusion: In-vitro, 0.8% HA is more effective in reducing the P. gingivalis CFUs/ml compared with 0.2% CHX.
Collapse
Affiliation(s)
- Munerah Binshabaib
- Munerah Binshabaib, BDS, MSc. Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Kawther Aabed, BDS. Department of Biology, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fitoon Alotaibi
- Fitoon Alotaibi, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Milaf Alwaqid
- Milaf Alwaqid, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Aljohara Alfraidy
- Aljowhara Faraidy, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Shatha Alharthi
- Shatha Alharthi, BDS, MSc. Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|