1
|
Eltabeeb MA, Hamed RR, El-Nabarawi MA, Teaima MH, Hamed MIA, Darwish KM, Hassan M, Abdellatif MM. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor ® based cerosomes as a repurposed platform for Methicillin-Resistant Staphylococcus aureus-(MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res 2025; 15:556-576. [PMID: 38762697 PMCID: PMC11683024 DOI: 10.1007/s13346-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Nanocomposite alginate hydrogel containing Propranolol hydrochloride (PNL) cerosomes (CERs) was prepared as a repurposed remedy for topical skin Methicillin-Resistant Staphylococcus aureus (MRSA) infection. CERs were formed via an ethanol injection technique using different ceramides, Kolliphores® as a surfactant, and Didodecyldimethylammonium bromide (DDAB) as a positive charge inducer. CERs were optimized utilizing 13. 22 mixed-factorial design employing Design-Expert® software, the assessed responses were entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP). The optimum CER, composed of 5 mg DDAB, ceramide VI, and Kolliphor® RH40 showed tubular vesicles with EE% of 92.91 ± 0.98%, PS of 388.75 ± 18.99 nm, PDI of 0.363 ± 0.01, and ZP of 30.36 ± 0.69 mV. Also, it remained stable for 90 days and manifested great mucoadhesive aspects. The optimum CER was incorporated into calcium alginate to prepare nanocomposite hydrogel. The ex-vivo evaluation illustrated that PNL was permeated in a more prolonged pattern from PNL-loaded CERs nanocomposite related to PNL-composite, optimum CER, and PNL solution. Confocal laser scanning microscopy revealed a perfect accumulation of fluorescein-labeled CERs in the skin. The in-silico investigation illustrated that the PNL was stable when mixed with other ingredients in the CERs and confirmed that PNL is a promising candidate for curing MRSA. Moreover, the PNL-loaded CERs nanocomposite revealed superiority over the PNL solution in inhibiting biofilm formation and eradication. The PNL-loaded CERs nanocomposite showed superiority over the PNL-composite for treating MRSA infection in the in-vivo mice model. Histopathological studies revealed the safety of the tested formulations. In conclusion, PNL-loaded CERs nanocomposite provided a promising, safe cure for MRSA bacterial skin infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
2
|
Ullah M, Lee J, Hasan N, Hakim ML, Kwak D, Kim H, Lee E, Ahn J, Mun B, Lee EH, Jung Y, Yoo JW. Clindamycin-Loaded Polyhydroxyalkanoate Nanoparticles for the Treatment of Methicillin-Resistant Staphylococcus aureus-Infected Wounds. Pharmaceutics 2024; 16:1315. [PMID: 39458644 PMCID: PMC11510387 DOI: 10.3390/pharmaceutics16101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Owing to the growing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to conventional antibiotics, the development of innovative therapeutic strategies for the treatment of MRSA-infected cutaneous wounds poses a significant challenge. Methods: Here, by using polyhydroxyalkanoates (PHA), emerging biodegradable and biocompatible polymers naturally produced by various microorganisms, we developed clindamycin-loaded PHA nanoparticles (Cly-PHA NPs) as a novel approach for the treatment of MRSA-infected cutaneous wounds. Results: Cly-PHA NPs were characterized in terms of mean particle size (216.2 ± 38.9 nm), polydispersity index (0.093 ± 0.03), zeta potential (11.3 ± 0.5 mV), and drug loading (6.76 ± 0.19%). Owing to the sustained release of clindamycin over 2 days provided by the PHA, Cly-PHA NPs exhibited potent antibacterial effects against MRSA. Furthermore, Cly-PHA NPs significantly facilitated wound healing in a mouse model of MRSA-infected full-thickness wounds by effectively eradicating MRSA from the wound bed. Conclusions: Therefore, our results suggest that Cly-PHA NPs offer a promising approach for combating MRSA infections and accelerating cutaneous wound healing.
Collapse
Affiliation(s)
- Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Nurhasni Hasan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia;
| | - Md. Lukman Hakim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Eunhye Lee
- CJ CheilJedang Corporation, Suwon 16495, Republic of Korea; (E.L.); (J.A.); (B.M.)
| | - Jeesoo Ahn
- CJ CheilJedang Corporation, Suwon 16495, Republic of Korea; (E.L.); (J.A.); (B.M.)
| | - Bora Mun
- CJ CheilJedang Corporation, Suwon 16495, Republic of Korea; (E.L.); (J.A.); (B.M.)
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geoumjeong-gu, Busan 46241, Republic of Korea; (M.U.); (J.L.); (M.L.H.); (D.K.); (H.K.); (Y.J.)
| |
Collapse
|
3
|
Yapa PN, Munaweera I, Weerasekera MM, Weerasinghe L. Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR). J Biol Inorg Chem 2024; 29:477-498. [PMID: 38995397 DOI: 10.1007/s00775-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.
Collapse
Affiliation(s)
- Piumika N Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka.
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| |
Collapse
|
4
|
Cortesi R, Sguizzato M, Ferrara F. Lipid-based nanosystems for wound healing. Expert Opin Drug Deliv 2024; 21:1191-1211. [PMID: 39172249 DOI: 10.1080/17425247.2024.2391473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery. AREAS COVERED Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue. The role of nanosystems in delivering mostly natural compounds on skin as well as the technological and engineering strategies to increase their efficiency in wound healing effect are reviewed. Finally, in vitro, ex-vivo and in vivo studies are reported. EXPERT OPINION LBN have shown promise in addressing the challenges of wound healing as they can improve the stability of drugs used in wound therapy, leading to higher efficacy and fewer adverse effects as compared to traditional formulations. LBNs being involved in the inflammatory and proliferation stages of the wound healing process, enable the modification of wound healing through multiple ways. In addition, the use of new technologies, including 3D bioprinting and photobiomodulation, may lead to potential breakthroughs in wound healing. This would provide clinicians with more potent forms of therapy for wound healing.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Alifah N, Palungan J, Ardayanti K, Ullah M, Nurkhasanah AN, Mustopa AZ, Lallo S, Agustina R, Yoo JW, Hasan N. Development of Clindamycin-Releasing Polyvinyl Alcohol Hydrogel with Self-Healing Property for the Effective Treatment of Biofilm-Infected Wounds. Gels 2024; 10:482. [PMID: 39057504 PMCID: PMC11275357 DOI: 10.3390/gels10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Self-healing hydrogels have good mechanical strength, can endure greater external force, and have the ability to heal independently, resulting in a strong bond between the wound and the material. Bacterial biofilm infections are life-threatening. Clindamycin (Cly) can be produced in the form of a self-healing hydrogel preparation. It is noteworthy that the antibacterial self-healing hydrogels show great promise as a wound dressing for bacterial biofilm infection. In this study, we developed a polyvinyl alcohol/borax (PVA/B) self-healing hydrogel wound dressing that releases Cly. Four ratios of PVA, B, and Cly were used to make self-healing hydrogels: F1 (4%:0.8%:1%), F2 (4%:1.2%:1%), F3 (1.6%:1%), and F4 (4%:1.6%:0). The results showed that F4 had the best physicochemical properties, including a self-healing duration of 11.81 ± 0.34 min, swelling ratio of 85.99 ± 0.12%, pH value of 7.63 ± 0.32, and drug loading of 98.34 ± 11.47%. The B-O-C cross-linking between PVA and borax caused self-healing, according to FTIR spectra. The F4 formula had a more equal pore structure in the SEM image. The PVA/B-Cly self-healing hydrogel remained stable at 6 ± 2 °C for 28 days throughout the stability test. The Korsmeyer-Peppas model released Cly by Fickian diffusion. In biofilm-infected mouse wounds, PVA/B-Cly enhanced wound healing and re-epithelialization. Our results indicate that the PVA/B-Cly produced in this work has reliable physicochemical properties for biofilm-infected wound therapy.
Collapse
Affiliation(s)
- Nur Alifah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Juliana Palungan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Kadek Ardayanti
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Andi Nokhaidah Nurkhasanah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia;
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Rina Agustina
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Nurhasni Hasan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| |
Collapse
|
6
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
7
|
Fauziah N, Safirah NA, Rahmadani IN, Hidayat MN, Fadhilah NA, Djide NJN, Permana AD. Selective Delivery of Clindamycin Using a Combination of Bacterially Sensitive Microparticle and Separable Effervescent Microarray Patch on Bacteria Causing Diabetic Foot Infection. Pharm Res 2024; 41:967-982. [PMID: 38637438 DOI: 10.1007/s11095-024-03697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Diabetic foot infection (DFI) is one of the complications of diabetes mellitus. Clindamycin (CLY) is one of the antibiotics recommended to treat DFI, but CLY given orally and intravenously still causes many side effects. METHODS In this study, we encapsulated CLY in a bacteria sensitive microparticle system (MP-CLY) using polycaprolactone (PCL) polymer. MP-CLY was then delivered in a separable effervescent microarray patch (MP-CLY-SEMAP), which has the ability to separate between the needle layer and separable layer due to the formation of air bubbles when interacting with interstitial fluid in the skin. RESULT The characterization results of MP-CLY proved that CLY was encapsulated in large amounts as the amount of PCL polymer used increased, and there was no change in the chemical structure of CLY. In vitro release test results showed increased CLY release in media cultured with Staphylococcus aureus bacteria and showed controlled release. The characterization results of MPCLY-SEMAP showed that the developed formula has optimal mechanical and penetration capabilities and can separate in 56 ± 5.099 s. An ex vivo dermatokinetic test on a bacterially infected skin model showed an improvement of CLY dermatokinetic profile from MP-CLY SEMAP and a decrease in bacterial viability by 99.99%. CONCLUSION This research offers proof of concept demonstrating the improved dermatokinetic profile of CLY encapsulated in a bacteria sensitive MP form and delivered via MP-CLY-SEMAP. The results of this research can be developed for future research by testing MP-CLY-SEMAP in vivo in appropriate animal models.
Collapse
Affiliation(s)
- Nurul Fauziah
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - Nur Annisa Safirah
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - Iis Nurul Rahmadani
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - Muhammad Nur Hidayat
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - Nur Azizah Fadhilah
- Faculty of Medicine, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia.
| |
Collapse
|
8
|
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv 2024; 14:13535-13564. [PMID: 38665493 PMCID: PMC11043667 DOI: 10.1039/d4ra00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland Brisbane Queens-land 4072 Australia
| | - Muhammad Wahab Amjad
- 6 Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh 15213 Pittsburgh Pennsylvania USA
| |
Collapse
|
9
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
10
|
Simpson E, Sarwar H, Jack I, Lowry D. Evaluation of the Potential of Chitosan Nanoparticles as a Delivery Vehicle for Gentamicin for the Treatment of Osteomyelitis. Antibiotics (Basel) 2024; 13:208. [PMID: 38534643 DOI: 10.3390/antibiotics13030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
Chitosan nanoparticle delivery systems have the potential for enhancing bone healing and addressing osteomyelitis. The objective was to deliver antimicrobial agents capable of preventing or treating osteomyelitis. Each formulation was optimized to achieve desired characteristics in terms of size (ranging from 100 to 400 nm), PDI (less than 0.5), zeta potential (typically negative), and in vitro release profiles for gentamicin. Entrapment percentages varied with gentamicin ranging from 10% to 65%. The chitosan nanoparticles exhibited substantial antimicrobial efficacy, particularly against P. aeruginosa and MRSA, with zones of inhibition ranging from 13 to 24 mm and a complete reduction in colony forming units observed between 3 and 24 h. These chitosan nanoparticle formulations loaded with antimicrobials hold promise for addressing orthopedic complications.
Collapse
Affiliation(s)
- Elliot Simpson
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Rd, Coleraine BT52 1SA, UK
| | - Humera Sarwar
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Rd, Coleraine BT52 1SA, UK
| | - Iain Jack
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Rd, Coleraine BT52 1SA, UK
| | - Deborah Lowry
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Rd, Coleraine BT52 1SA, UK
| |
Collapse
|
11
|
Antonov YA, Kulikov SN, Bezrodnykh EA, Zhuravleva IL, Berezin BB, Tikhonov VE. An insight into the effect of interaction with protein on antibacterial activity of chitosan derivatives. Int J Biol Macromol 2024; 259:129050. [PMID: 38158056 DOI: 10.1016/j.ijbiomac.2023.129050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial activity of chitosan in protein-rich media is of a particular interest for various protein-based drug delivery and other systems. For the first time, bacteriostatic activity of chitosan derivatives in the presence of caseinate sodium (CAS) was studied and discussed. Complexation of chitosan derivatives soluble in acidic (CH and RCH) or alkalescent (RCH) media with CAS was confirmed by fluorescent spectroscopy, turbodimetry, light scattering data and measurement of electrical potentials of CAS/chitosan derivative complexes. An addition of CH and RCH caused a static quenching of CAS. Binding constants Kb determined for CH/CAS and RCH/CAS complexes at pH 6.0 were equal to 29.8 × 106 M-1 and 8.9 × 106 M-1, respectively. Kb value of RCH/CAS complex at pH 7.4 was equal to 1.1 × 105'M-1. The poisoned food method was used for counting the number and the direct measurement of the size of bacterial colonies on the surfaces of turbid agar media containing CAS/chitosan derivative complexex. Complete suppression of E. coli cells growth and restriction of S. aureus cells growth were observed on the surface of acidic media. A high concentration of CAS reduced the activity. The activity of RCH in alkalescent media is low or absent. These results can be promising for preparation of microbiologically stable protein-based drug delivery systems.
Collapse
Affiliation(s)
- Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N Kulikov
- Kazan Scientific Research Institute of Epidemiology and Microbiology, Kazan, Russia; Kazan Federal University, Kazan, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Irina L Zhuravleva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
13
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
14
|
Dudek B, Bąchor U, Drozd-Szczygieł E, Brożyna M, Dąbrowski P, Junka A, Mączyński M. Antimicrobial and Cytotoxic Activities of Water-Soluble Isoxazole-Linked 1,3,4-Oxadiazole with Delocalized Charge: In Vitro and In Vivo Results. Int J Mol Sci 2023; 24:16033. [PMID: 38003222 PMCID: PMC10671643 DOI: 10.3390/ijms242216033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The distinct structure of cationic organic compounds plays a pivotal role in enhancing their water solubility, which in turn influences their bioavailability. A representative of these compounds, which contains a delocalized charge, is 5-amino-2-(5-amino-3-methyl-1,2-oxazol-4-yl)-3-methyl-2,3-dihydro-1,3,4-oxadiazol-2-ylium bromide (ED). The high-water solubility of ED obviates the need for potentially harmful solvents during in vitro testing. The antibacterial and antifungal activities of the ED compound were assessed in vitro using the microtiter plate method and a biocellulose-based biofilm model. Additionally, its cytotoxic effects on wound bed fibroblasts and keratinocytes were examined. The antistaphylococcal activity of ED was also evaluated using an in vivo larvae model of Galleria mellonella. Results indicated that ED was more effective against Gram-positive bacteria than Gram-negative ones, exhibiting bactericidal properties. Furthermore, ED demonstrated greater efficacy against biofilms formed by Gram-positive bacteria. At bactericidal concentrations, ED was non-cytotoxic to fibroblasts and keratinocytes. In in vivo tests, ED was non-toxic to the larvae. When co-injected with a high load of S. aureus, it reduced the average larval mortality by approximately 40%. These findings suggest that ED holds promise for further evaluation as a potential treatment for biofilm-based wound infections, especially those caused by Gram-positive pathogens like S. aureus.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| | - Ewa Drozd-Szczygieł
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| | - Malwina Brożyna
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Piotr Dąbrowski
- Medical Department, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (B.D.); (M.B.)
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland; (U.B.); (E.D.-S.); (M.M.)
| |
Collapse
|
15
|
Das R, Le TT, Schiff B, Chorsi MT, Park J, Lam P, Kemerley A, Supran AM, Eshed A, Luu N, Menon NG, Schmidt TA, Wang H, Wu Q, Thirunavukkarasu M, Maulik N, Nguyen TD. Biodegradable piezoelectric skin-wound scaffold. Biomaterials 2023; 301:122270. [PMID: 37591188 PMCID: PMC10528909 DOI: 10.1016/j.biomaterials.2023.122270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/12/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Electrical stimulation (ES) induces wound healing and skin regeneration. Combining ES with the tissue-engineering approach, which relies on biomaterials to construct a replacement tissue graft, could offer a self-stimulated scaffold to heal skin-wounds without using potentially toxic growth factors and exogenous cells. Unfortunately, current ES technologies are either ineffective (external stimulations) or unsafe (implanted electrical devices using toxic batteries). Hence, we propose a novel wound-healing strategy that integrates ES with tissue engineering techniques by utilizing a biodegradable self-charged piezoelectric PLLA (Poly (l-lactic acid)) nanofiber matrix. This unique, safe, and stable piezoelectric scaffold can be activated by an external ultrasound (US) to produce well-controlled surface-charges with different polarities, thus serving multiple functions to suppress bacterial growth (negative surface charge) and promote skin regeneration (positive surface charge) at the same time. We demonstrate that the scaffold activated by low intensity/low frequency US can facilitate the proliferation of fibroblast/epithelial cells, enhance expression of genes (collagen I, III, and fibronectin) typical for the wound healing process, and suppress the growth of S. aureus and P. aeruginosa bacteria in vitro simultaneously. This approach induces rapid skin regeneration in a critical-sized skin wound mouse model in vivo. The piezoelectric PLLA skin scaffold thus assumes the role of a multi-tasking, biodegradable, battery-free electrical stimulator which is important for skin-wound healing and bacterial infection prevention simultaneuosly.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin Schiff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Meysam T Chorsi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Priscilla Lam
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Andrew Kemerley
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Ajayan Mannoor Supran
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ngoc Luu
- Department of Biomedical Engineering, New York University, New York, NY, 10012, USA
| | - Nikhil G Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, 06030, CT, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, 06030, CT, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Hanzhang Wang
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Thanh D Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
16
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
18
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel) 2023; 15:polym15092167. [PMID: 37177313 PMCID: PMC10180664 DOI: 10.3390/polym15092167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Asma Ghazzy
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
20
|
Mendes AI, Fraga AG, Peixoto MJ, Aroso I, Longatto‐Filho A, Marques AP, Pedrosa J. Gellan gum spongy-like hydrogel-based dual antibiotic therapy for infected diabetic wounds. Bioeng Transl Med 2023; 8:e10504. [PMID: 37206216 PMCID: PMC10189450 DOI: 10.1002/btm2.10504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)-based spongy-like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin-resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic-associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA-infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration.
Collapse
Affiliation(s)
- Ana Isabel Mendes
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Alexandra Gabriel Fraga
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Maria João Peixoto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ivo Aroso
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
| | - Adhemar Longatto‐Filho
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosSão PauloBrazil
- Laboratory of Medical Investigation (LIM) 14Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
| | - Alexandra Pinto Marques
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
21
|
Karnam S, Jindal AB, Agnihotri C, Singh BP, Paul AT. Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs). AAPS PharmSciTech 2023; 24:108. [PMID: 37100956 DOI: 10.1208/s12249-023-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) imposes a major challenge for the treatment of infectious diseases with existing antibiotics. MRSA associated with superficial skin and soft tissue infections (SSTIs) is one of them, affecting the skin's superficial layers, and it includes impetigo, folliculitis, cellulitis, furuncles, abscesses, surgical site infections, etc. The efficient care of superficial SSTIs caused by MRSA necessitates local administration of antibiotics, because oral antibiotics does not produce the required concentration at the local site. The topical administration of nanocarriers has been emerging in the area of drug delivery due to its advantages over conventional topical formulation. It enhances the solubility and permeation of the antibiotics into deeper layer of the skin. Apart from this, antibiotic resistance is something that needs to be combated on multiple fronts, and antibiotics encapsulated in nanocarriers help to do so by increasing the therapeutic efficacy in a number of different ways. The current review provides an overview of the resistance mechanism in S. aureus as well as various nanocarriers reported for the effective management of MRSA-associated superficial SSTIs.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Charu Agnihotri
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India.
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
22
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
23
|
Integration of terpesomes loaded Levocetrizine dihydrochloride gel as a repurposed cure for Methicillin-Resistant Staphylococcus aureus (MRSA)-Induced skin infection; D-optimal optimization, ex-vivo, in-silico, and in-vivo studies. Int J Pharm 2023; 633:122621. [PMID: 36693486 DOI: 10.1016/j.ijpharm.2023.122621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
The intention of this work is to assess the repurposed antimicrobial impact of Levocetirizine dihydrochloride (LVC), which is a well-known antihistaminic drug, in addition, to augment the antimicrobial effect by using terpene-enriched vesicles (TPs). To investigate how various parameters affect TPs aspects, TPs were made employing the ethanol-injection-method and optimized d-optimal design. The TPs were characterized based on their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum TP was submitted to more examinations. The optimum TP (TP12) showed a spherical vesicle having an EE% of 66.39 ± 0.12%, PS of 243.3 ± 4.60 nm, PDI of 0.458 ± 0.003, and ZP of 24.2 ± 0.55 mV. The in-vitro release study results demonstrated that LVC is sustainedly liberated from the optimum TP compared to LVC-solution. The ex-vivo assessment showed that LVC was released in a more sustained manner from TPs-gel related to LVC solution, optimum TP, and LVC gel. Ex-vivo visualization by confocal laser scanning microscopy showed good deposition of the fluorescein-labeled TP. Further, the in-vitro anti-bacterial effect and biofilm inhibition and detachment assessment confirmed the potency of LVC against Methicillin-resistant-Staphylococcus-aureus (MRSA). The in-silico study demonstrated that the LVC has excellent stability with other ingredients combined with it in the TPs, further, it proved that LVC is a potential candidate for treating MRSA. In-vivo assessments revealed a good antimicrobial effect toward MRSA infection. Moreover, the histopathological evaluation confirmed the safety of using TPs-gel topically. In conclusion, MRSA-related skin infections may be treated using the LVC loaded TPs-gel as a promising system.
Collapse
|
24
|
Ahmed KK, Wongrakpanich A. Particles-based medicated wound dressings: a comprehensive review. Ther Deliv 2023; 13:489-505. [PMID: 36779372 DOI: 10.4155/tde-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Wound healing is a dynamic process that is controlled by many factors. The interest in developing wound dressings capable of providing the required environment for the proper wound healing process is ever expanding, and particles occupy a sizable share of the research area. This comprehensive review reports 10 years of research in terms of current advances, delivery system evaluation, outcomes and future directions. The review follows a clearly defined method of article search and screening. Retrieved papers are reviewed regarding the materials, formulation development, and in vitro/in vivo testing of particles-based wound dressings. The review summarized the current status of medicated wound dressing research, identifies gaps to be addressed, and represents a reference for researchers working on wound dressings.
Collapse
Affiliation(s)
- Kawther Khalid Ahmed
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Bab-almoadham, P.O.Box 14026, Baghdad, Iraq
- University of Iowa College of Pharmacy, IA, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
25
|
Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-Based Wound Dressing for Advanced Management of Infected Wound. Antibiotics (Basel) 2023; 12:antibiotics12020351. [PMID: 36830262 PMCID: PMC9952012 DOI: 10.3390/antibiotics12020351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The effective prevention and treatment of bacterial infections is imperative to wound repair and the improvement of patient outcomes. In recent years, nanomaterials have been extensively applied in infection control and wound healing due to their special physiochemical and biological properties. Incorporating antibacterial nanomaterials into wound dressing has been associated with improved biosafety and enhanced treatment outcomes compared to naked nanomaterials. In this review, we discuss progress in the application of nanomaterial-based wound dressings for advanced management of infected wounds. Focus is given to antibacterial therapy as well as the all-in-one detection and treatment of bacterial infections. Notably, we highlight progress in the use of nanoparticles with intrinsic antibacterial performances, such as metals and metal oxide nanoparticles that are capable of killing bacteria and reducing the drug-resistance of bacteria through multiple antimicrobial mechanisms. In addition, we discuss nanomaterials that have been proven to be ideal drug carriers for the delivery and release of antimicrobials either in passive or in stimuli-responsive manners. Focus is given to nanomaterials with the ability to kill bacteria based on the photo-triggered heat (photothermal therapy) or ROS (photodynamic therapy), due to their unparalleled advantages in infection control. Moreover, we highlight examples of intelligent nanomaterial-based wound dressings that can detect bacterial infections in-situ while providing timely antibacterial therapy for enhanced management of infected wounds. Finally, we highlight challenges associated with the current nanomaterial-based wound dressings and provide further perspectives for future improvement of wound healing.
Collapse
|
26
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
27
|
Zhuang J, Yu Y, Lu R. Mesoporous silica nanoparticles as carrier to overcome bacterial drug resistant barriers. Int J Pharm 2023; 631:122529. [PMID: 36563796 DOI: 10.1016/j.ijpharm.2022.122529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance has become a global threat to health due to abuse of antibiotics. Lots of existing antibiotics have lost their effect on drug resistant bacteria. Moreover, the discovery of novel antibiotics becomes more and more difficult. It is necessary to develop new strategies to fight against antibiotic resistance. Nano-drug delivery systems endow old antibiotics with new vitality to defeat the antibiotic resistant barrier by protecting antibiotics against hydrolysis, increasing uptake and circumventing efflux pump. Among them, mesoporous silica nanoparticles (MSNs) are one of the most extensively investigated as carrier of antibiotics due to large drug loading capability, tunable physicochemical characteristics, and biocompatibility. MSNs can improve the delivery of antibiotics to bacteria greatly by reducing size, modifying surface, and regulating shapes. Furthermore, MSNs hybridized metal ions or metal nanoparticles exert stronger antibacterial effect by controlling the release of metal ions or increasing active oxygen species. In addition, metal capped MSNs are also able to load antibiotics to exert synergistic antibacterial effect. This paper firstly reviewed the current application of various nanomaterials as antibacterial agents, and then focused on the MSNs including the introduction of MSNs and various approaches for improving antibacterial effect of MSNs.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yiming Yu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Rui Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
28
|
Hamdan N, Khodir WKWA, Hamid SA, Nasir MHM, Hamzah AS, Cruz-Maya I, Guarino V. PCL/Gelatin/Graphene Oxide Electrospun Nanofibers: Effect of Surface Functionalization on In Vitro and Antibacterial Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:488. [PMID: 36770449 PMCID: PMC9921190 DOI: 10.3390/nano13030488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of resistance to pathogenic bacteria has resulted from the misuse of antibiotics used in wound treatment. Therefore, nanomaterial-based agents can be used to overcome these limitations. In this study, polycaprolactone (PCL)/gelatin/graphene oxide electrospun nanofibers (PGO) are functionalized via plasma treatment with the monomeric groups diallylamine (PGO-M1), acrylic acid (PGO-M2), and tert-butyl acrylate (PGO-M3) to enhance the action against bacteria cells. The surface functionalization influences the morphology, surface wettability, mechanical properties, and thermal stability of PGO nanofibers. PGO-M1 and PGO-M2 exhibit good antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas PGO-M3 tends to reduce their antibacterial properties compared to PGO nanofibers. The highest proportion of dead bacteria cells is found on the surface of hydrophilic PGO-M1, whereas live cells are colonized on the surface of hydrophobic PGO-M3. Likewise, PGO-M1 shows a good interaction with L929, which is confirmed by the high levels of adhesion and proliferation with respect to the control. All the results confirm that surface functionalization can be strategically used as a tool to engineer PGO nanofibers with controlled antibacterial properties for the fabrication of highly versatile devices suitable for different applications (e.g., health, environmental pollution).
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
29
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
30
|
Sorinolu AJ, Godakhindi V, Siano P, Vivero-Escoto JL, Munir M. Influence of silver ion release on the inactivation of antibiotic resistant bacteria using light-activated silver nanoparticles. MATERIALS ADVANCES 2022; 3:9090-9102. [PMID: 36545324 PMCID: PMC9743134 DOI: 10.1039/d2ma00711h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The widespread increase in antibiotic resistance (AR), in an extensive range of microorganisms, demands the development of alternative antimicrobials with novel non-specific low-mutation bacterial targets. Silver nanoparticles (AgNPs) and photosensitizers (PSs) are promising antimicrobial agents with broad-spectrum activity and low tendency for antimicrobial resistance development. Herein, we investigated the light-mediated oxidation of AgNPs for accelerated release of Ag+ in the antibacterial synergy of PS-AgNP conjugates using protoporphyrin IX (PpIX) as a PS. Also, the influence of polyethyleneimine (PEI) coated AgNPs in promoting antibacterial activity was examined. We synthesized, characterized and tested the antimicrobial effect of three nanoparticles: AgNPs, PpIX-AgNPs, and PEI-PpIX-AgNPs against a methicillin-resistant Staphylococcus aureus strain (MRSA) and a wild-type multidrug resistant (MDR) E. coli. PpIX-AgNPs were the most effective material achieving >7 log inactivation of MRSA and MDR E. coli. The order of bacterial log inactivation was PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs. This order correlates with the trend of Ag+ concentration released by the NPs (PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs). Our study confirms a synergistic effect between PpIX and AgNPs in the inactivation of AR pathogens with about 10-fold increase in inactivation of ARB relative to AgNPs only. The concentration of Ag+ released from NPs determined the log inactivation of MRSA and MDR E. coli more than either the phototoxic effect or the electrostatic interaction promoted by surface charge of nanoparticles with bacteria cells. All NPs showed negligible cytotoxicity to mammalian cells at the bacterial inhibitory concentration after 24 h exposure. These observations confirm the crucial role of optimized Ag+ release for enhanced performance of AgNP-based antimicrobials against AR pathogens.
Collapse
Affiliation(s)
- Adeola Julian Sorinolu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-1623
| | - Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
- Nanoscale Science Program, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Paolo Siano
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-5239
- Nanoscale Science Program, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte Charlotte NC 28223 USA +1 (704)-687-1623
| |
Collapse
|
31
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Cao J, Hlaing SP, Lee J, Kim J, Lee EH, Kang SH, Hong SW, Yoon IS, Yun H, Jung Y, Yoo JW. Bacteria-Adhesive Nitric Oxide-Releasing Graphene Oxide Nanoparticles for MRPA-Infected Wound Healing Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50507-50519. [PMID: 36331408 DOI: 10.1021/acsami.2c13317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.
Collapse
Affiliation(s)
- Jiafu Cao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang550014, China
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong30019, South Korea
| | - Seok Hee Kang
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - Suck Won Hong
- College of Nanoscience & Nanotechnology, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan46241, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan46241, South Korea
| |
Collapse
|
33
|
Development of chloramphenicol whey protein-based microparticles incorporated into thermoresponsive in situ hydrogels for improved wound healing treatment. Int J Pharm 2022; 628:122323. [DOI: 10.1016/j.ijpharm.2022.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022]
|
34
|
Mou C, Wang X, Liu Y, Xie Z, Zheng M. Positively charged BODIPY@carbon dot nanocomposites for enhanced photomicrobicidal efficacy and wound healing. J Mater Chem B 2022; 10:8094-8099. [PMID: 36128983 DOI: 10.1039/d2tb01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Even with advances in diverse antibiotics, bacterial infectious diseases with high mortality and morbidity still seriously endanger human health, which spurs the development of alternative antiseptic and therapeutic strategies for combatting bacteria. Antimicrobial photodynamic inactivation (aPDI) has emerged as an effective treatment protocol for different types of infection. Moreover, the risk from Gram-positive organisms cannot be overlooked. In the present work, fluoroborondipyrrole (BODIPY) was assembled with cationic and anionic carbon dots (CDs) to construct positively charged (termed p-BDP) and negatively charged (termed n-BDP) nanophotosensitizers. Compared with n-BDP, p-BDP showed a stronger photoinactivation activity against Staphylococcus aureus, and its minimal inhibitory concentration (MIC) was as low as 128 ng mL-1. In addition, p-BDP could act as a more efficacious wound dressing to accelerate the healing of S. aureus infections. This work opens up alternative thinking for the design of highly effective nanobactericides.
Collapse
Affiliation(s)
- Chengjian Mou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China.
| | - Xinyuan Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China.
| | - Yanchao Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China.
| |
Collapse
|
35
|
Komprda T, Sládek Z, Vícenová M, Simonová J, Franke G, Lipový B, Matejovičová M, Kacvinská K, Sabliov C, Astete CE, Levá L, Popelková V, Bátik A, Vojtová L. Effect of Polymeric Nanoparticles with Entrapped Fish Oil or Mupirocin on Skin Wound Healing Using a Porcine Model. Int J Mol Sci 2022; 23:ijms23147663. [PMID: 35887016 PMCID: PMC9318284 DOI: 10.3390/ijms23147663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The utilization of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) with entrapped fish oil (FO) loaded in collagen-based scaffolds for cutaneous wound healing using a porcine model is unique for the present study. Full-depth cutaneous excisions (5 × 5 cm) on the pig dorsa were treated with pure collagen scaffold (control, C), empty PLGA NPs (NP), FO, mupirocin (MUP), PLGA NPs with entrapped FO (NP/FO) and PLGA NPs with entrapped MUP (NP/MUP). The following markers were evaluated on days 0, 3, 7, 14 and 21 post-excision: collagen, hydroxyproline (HP), angiogenesis and expressions of the COX2, EGF, COL1A1, COL1A3, TGFB1, VEGFA, CCL5 and CCR5 genes. The hypothesis that NP/FO treatment is superior to FO alone and that it is comparable to NP/MUP was tested. NP/FO treatment increased HP in comparison with both FO alone and NP/MUP (day 14) but decreased (p < 0.05) angiogenesis in comparison with FO alone (day 3). NP/FO increased (p < 0.05) the expression of the CCR5 gene (day 3) and tended (p > 0.05) to increase the expressions of the EGF (day 7, day 14), TGFB1 (day 21) and CCL5 (day 7, day 21) genes as compared with NP/MUP. NP/FO can be suggested as a suitable alternative to NP/MUP in cutaneous wound treatment.
Collapse
Affiliation(s)
- Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.S.); (G.F.); (M.M.); (V.P.)
- Correspondence:
| | - Zbyšek Sládek
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (A.B.)
| | - Monika Vícenová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (M.V.); (L.L.)
| | - Jana Simonová
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.S.); (G.F.); (M.M.); (V.P.)
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.S.); (G.F.); (M.M.); (V.P.)
| | - Břetislav Lipový
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared with University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
- Central European Institute of Technology, University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (K.K.); (L.V.)
| | - Milena Matejovičová
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.S.); (G.F.); (M.M.); (V.P.)
| | - Katarína Kacvinská
- Central European Institute of Technology, University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (K.K.); (L.V.)
| | - Cristina Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (C.S.); (C.E.A.)
| | - Carlos E. Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (C.S.); (C.E.A.)
| | - Lenka Levá
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (M.V.); (L.L.)
| | - Vendula Popelková
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.S.); (G.F.); (M.M.); (V.P.)
| | - Andrej Bátik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (Z.S.); (A.B.)
| | - Lucy Vojtová
- Central European Institute of Technology, University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (K.K.); (L.V.)
| |
Collapse
|
36
|
Indrakumar J, Balan P, Murali P, Solaimuthu A, Vijayan AN, Korrapati PS. Applications of molybdenum oxide nanoparticles impregnated collagen scaffolds in wound therapeutics. J Trace Elem Med Biol 2022; 72:126983. [PMID: 35537228 DOI: 10.1016/j.jtemb.2022.126983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The highly complex pathophysiology of the wound micro-environment demands the development of a multi-faceted system which would enhance the wound healing cascade. Incorporation of nanotechnology in wound therapeutics has opened up new avenues to tourment the diseased condition. Amongst the various types of nanoparticles molybdenum oxide nanoparticles posses various inherent properties that makes it a versatile material to be used in healing. Incorporation of Molybdenum nanoparticles into collagen scaffolds would provide a synergistic and sequential healing process ensuring the formation of a fully functional tissue. MATERIALS AND METHODS The physico-chemical characterization of the synthesized materials were done using SEM and FT-IR techniques. The bicompatibility and cell proliferation were tested using HaCaT cell lines. Pro-angiogenic ability of the scaffold was tested using CAM assay and Chick aortic arch assay. Finally the in-vivo wound healing ability of the material was tested by creating wound of about 6 cm2 on the dorsal side of Wistar rats and observed for about 21 days. RESULTS The characterization of the scaffold revealed the presence MoO3 nanoparticles and their structural integrity within the scaffold. The synthesized MoO3-collagen nanocomposite was found to be biocompatible and hemocompatible. The in-vitro studies demonstrated that the MoO3-collagen scaffold significantly increased the cell adhesion and migration to nearly 2 fold. The MoO3 embedded collagen sheets synergistically favoured neovascularization and re-epithelization,which would potentially enhance therapeutic efficiency of the scaffold. The nanocomposite also encouraged results in in-vivo analysis, the Wistar rats treated with MoO3-collagen scaffolds showed complete healing in about 15 days. CONCLUSION The fabricated MoO3-collagen scaffold was found to play an important role in all major events of wound healing such as adhesion, migration, proliferation and angiogenesis. The in-vivo healing assay also proved that the healing rate of animals treated with the samples was comparatively faster. Further research using various trace elements would open up promising avenues in healing therapeutics.
Collapse
Affiliation(s)
- Janani Indrakumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Poornima Balan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Padmaja Murali
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | | | - Ane Nishitha Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai 600020, India.
| |
Collapse
|
37
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
38
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
39
|
Development of Carboxymethyl Chitosan Nanoparticles Prepared by Ultrasound-Assisted Technique for a Clindamycin HCl Carrier. Polymers (Basel) 2022; 14:polym14091736. [PMID: 35566905 PMCID: PMC9106027 DOI: 10.3390/polym14091736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric nanoparticles are one method to modify the drug release of small hydrophilic molecules. In this study, clindamycin HCl was used as a model drug loaded in carboxymethyl chitosan nanoparticles cross-linked with Ca2+ ions (CMCS-Ca2+). The ultrasonication with experimental design was used to produce CMCS-Ca2+ nanoparticles loading clindamycin HCl. The model showed that the size of nanoparticles decreased when amplitude and time increased. The nanoparticle size of 318.40 ± 7.56 nm, decreased significantly from 543.63 ± 55.07 nm (p < 0.05), was obtained from 75% of amplitude and 180 s of time, which was one of the optimal conditions. The clindamycin loading content in this condition was 34.68 ± 2.54%. The drug content in nanoparticles showed an inverse relationship with the size of the nanoparticles. The sodium carboxymethylcellulose film loading clindamycin HCl nanoparticles exhibited extended release with 69.88 ± 2.03% drug release at 60 min and a gradual increase to 94.99 ± 4.70% at 24 h, and demonstrated good antibacterial activity against S. aureus and C. acne with 40.72 ± 1.23 and 48.70 ± 1.99 mm of the zone of inhibition at 24 h, respectively. Thus, CMCS-Ca2+ nanoparticles produced by the ultrasound-assisted technique could be a potential delivery system to modify the drug release of small hydrophilic antibiotics.
Collapse
|
40
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
41
|
Budhiraja M, Zafar S, Akhter S, Alrobaian M, Rashid MA, Barkat MA, Beg S, Ahmad FJ. Mupirocin-Loaded Chitosan Microspheres Embedded in Piper betle Extract Containing Collagen Scaffold Accelerate Wound Healing Activity. AAPS PharmSciTech 2022; 23:77. [PMID: 35194725 DOI: 10.1208/s12249-022-02233-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 01/13/2023] Open
Abstract
This study reports the formulation of mupirocin-loaded chitosan microspheres embedded in Piper betle extract containing collagen scaffold as combinational drug delivery for improved wound healing. Selection of chitosan type (molecular weight and degree of deacetylation) was carried out based on their antibacterial efficacy. The low molecular weight chitosan was selected owing to the highest antibacterial action against gram-positive as well as gram-negative bacteria. Low molecular weight chitosan-microspheres showed spherical shape with largely smooth surface morphology, 11.81% of mupirocin loading, and its controlled release profile. The XRD, DSC thermograms, and FT-IR spectral analysis revealed the mupirocin loaded in molecularly dispersed or in amorphous form, and having no chemical interactions with the chitosan matrix, respectively. The in vivo study indicates potential effect of the mupirocin, Piper betle, and chitosan in the collagen scaffold in the wound healing efficiency with approximately 90% wound healing observed at the end of 15 days of study for combinational drug-loaded chitosan microspheres-collagen scaffold-treated group. The histopathology examination further revealed tissue lined by stratified squamous epithelium, collagen deposition, fibroblastic proliferation, and absence of inflammation indicating relatively efficient wound healing once treated with combinational drug-loaded chitosan microspheres containing scaffold.
Collapse
Affiliation(s)
- Mansi Budhiraja
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sobiya Zafar
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Nucleic Acids Transfer by Non-Viral Methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071, Orléans Cedex 2, France
- LE STUDIUM® Loire Valley Institute for Advanced Studies, Centre-Val de Loire Region, France
- Faculty of Medicine, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application (YAJCPMA), King Abdulaziz University Hospital (KAUH), King Abdulaziz University (KAU), Jeddah, 21589, Saudi Arabia
- New Product Development, Global R&D, Sterile Ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn, WA7 3FA, UK
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Aseer, 62529, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farhan J Ahmad
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
42
|
Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment. Pharm Res 2022; 39:1165-1180. [DOI: 10.1007/s11095-022-03182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
43
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
44
|
Poly(lactic-co-glycolic) acid nanoparticles as a delivery system for fish oil in wound healing. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of the study was to design, synthetize and characterize poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) with entrapped fish oil (FO) for possible application in a cutaneous wound healing. Morphology of NPs was evaluated by transmission electron microscopy. Antimicrobial characteristics were tested using the disk diffusion method and plate count method, and cytotoxicity was evaluated by the MTT assay. Fish oil (y) was released from PLGA NPs within the time interval (x) of 96 h according to equation y = 6.2 + 0.914x. PLGA-FO NPs did not affect growth of Staphylococcus aureus or methicillin-resistant S. aureus (MRSA) strains. No cytotoxic effect of the tested NPs on the keratinocyte cell line was observed for concentration of 1 µg/ml. PLGA-FO NPs represent an interesting alternative for wound healing due to an excellent biocompatibility and unique release profile of FO, despite their lack of antimicrobial efficiency.
Collapse
|
45
|
Hasan N, Lee J, Ahn HJ, Hwang WR, Bahar MA, Habibie H, Amir MN, Lallo S, Son HJ, Yoo JW. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics 2021; 14:22. [PMID: 35056917 PMCID: PMC8779945 DOI: 10.3390/pharmaceutics14010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Polymicrobial wound infections are a major cause of infectious disease-related morbidity and mortality worldwide. In this study, we prepared a nitric oxide (NO)-releasing oxidized bacterial cellulose/chitosan (BCTO/CHI) crosslinked hydrogel to effectively treat polymicrobial wound infections. Linear polyethyleneimine diazeniumdiolate (PEI/NO) was used as the NO donor. The aldehyde group of BCTO and the amine of CHI were used as crosslinked hydrogel-based materials; their high NO loading capacity and antibacterial activity on the treatment of polymicrobial-infected wounds were investigated. The blank and NO-loaded crosslinked hydrogels, namely BCTO-CHI and BCTO-CHI-PEI/NO, were characterized according to their morphologies, chemical properties, and drug loading. BCTO-CHI-PEI/NO exhibited sustained drug release over four days. The high NO loading of BCTO-CHI-PEI/NO enhanced the bactericidal efficacy against multiple bacteria compared with BCTO-CHI. Furthermore, compared with blank hydrogels, BCTO-CHI-PEI/NO has a favorable rheological property due to the addition of a polymer-based NO donor. Moreover, BCTO-CHI-PEI/NO significantly accelerated wound healing and re-epithelialization in a mouse model of polymicrobial-infected wounds. We also found that both crosslinked hydrogels were nontoxic to healthy mammalian fibroblast cells. Therefore, our data suggest that the BCTO-CHI-PEI/NO developed in this study improves the efficacy of NO in the treatment of polymicrobial wound infections.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Wook Ryol Hwang
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Muhammad Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Muhammad Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Hong-Joo Son
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627706, Korea;
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| |
Collapse
|
46
|
Deng L, Lu H, Tu C, Zhou T, Cao W, Gao C. A tough synthetic hydrogel with excellent post-loading of drugs for promoting the healing of infected wounds in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112577. [PMID: 35525747 DOI: 10.1016/j.msec.2021.112577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infection is a major obstacle to the wound healing process. The hydrogel dressings with a simpler structure and good antibacterial and wound healing performance are appealing for clinical application. Herein, a robust hydrogel was synthesized from acrylamide (AM), acrylic acid (AA) and N,N'-methylene diacrylamide (MBA) via a redox initiating polymerization. The polymerization conditions were optimized to obtain the hydrogel with minimum unreacted monomers, which were 0.25% and 0.12% for AM and AA, respectively. The hydrogel had good mechanical strength, and could effectively resist damage by external forces and maintain a good macroscopic shape. It showed large water uptake capacity, and could post load a wide range of molecules via hydrogen bonding and electrostatic interaction. Loading of antibiotic doxycycline (DOX) enabled the hydrogel with good antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria in vitro and in vivo. In a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect wound, the DOX-loaded hydrogel showed good therapeutic effect. It could significantly promote the wound closure, increased the collagen coverage area, down-regulate the expressions of pro-inflammatory TNF-α and IL-1β factors, and up-regulate the expressions of anti-inflammatory IL-4 factor and CD31 neovascularization factor.
Collapse
Affiliation(s)
- Liwen Deng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huidan Lu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou 310009, China
| | - Chenxi Tu
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
47
|
Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm J 2021; 29:1238-1249. [PMID: 34819785 PMCID: PMC8596291 DOI: 10.1016/j.jsps.2021.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023] Open
Abstract
This study aimed to develop propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride to heal wound effectively. Nanoemulsion formulae were prepared and characterized by droplet size analysis, zeta potential, viscosity, ex-vivo permeation, and skin deposition. The optimal formula was evaluated in terms of morphology, cytotoxicity, and in-vitro wound healing assay. Also, the efficacy of the optimal formula was evaluated by in-vivo wound healing and histopathological studies. The optimal formula (F3) was composed of 9% tea tree oil and 0.4% propolis extracts with mean droplet size 19.42 ± 1.7 nm, zeta potential value −24.5 ± 0.2 mV, and viscosity 69.4 ± 1.8 mP. Furthermore, the optimal formula showed the highest skin deposition value 550.00 ± 4.9 µg/cm2 compared to other formulae. The TEM micrograph of the optimal formula showed that the nanoemulsion droplet has an almost spherical shape. Also, the optimal formula did not show noticeable toxicity to the human skin fibroblast cells. The in-vitro and in-vivo wound healing assay showed unexpected results that the un-loaded drug nanoemulsion formula had a comparable wound healing efficacy to the drug-loaded nanoemulsion formula. These results were confirmed with histopathological studies. Our results showed that the propolis and tea tree oil nanoemulsion, whether loaded or unloaded with an antibiotic, is an efficient local therapy for wound healing.
Collapse
|
48
|
Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, Fauzi MB. Potential of Nanoparticles Integrated with Antibacterial Properties in Preventing Biofilm and Antibiotic Resistance. Antibiotics (Basel) 2021; 10:1338. [PMID: 34827276 PMCID: PMC8615099 DOI: 10.3390/antibiotics10111338] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nur Fatiha Ghazalli
- Biomaterials Unit, School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| |
Collapse
|
49
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
50
|
Li Y, Jiang S, Song L, Yao Z, Zhang J, Wang K, Jiang L, He H, Lin C, Wu J. Zwitterionic Hydrogel Activates Autophagy to Promote Extracellular Matrix Remodeling for Improved Pressure Ulcer Healing. Front Bioeng Biotechnol 2021; 9:740863. [PMID: 34692658 PMCID: PMC8531594 DOI: 10.3389/fbioe.2021.740863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Pressure ulcer (PU) is a worldwide problem that is hard to heal because of its prolonged inflammatory response and impaired ECM deposition caused by local hypoxia and repeated ischemia/reperfusion. Our previous study discovered that the non-fouling zwitterionic sulfated poly (sulfobetaine methacrylate) (SBMA) hydrogel can improve PU healing with rapid ECM rebuilding. However, the mechanism of the SBMA hydrogel in promoting ECM rebuilding is unclear. Therefore, in this work, the impact of the SBMA hydrogel on ECM reconstruction is comprehensively studied, and the underlying mechanism is intensively investigated in a rat PU model. The in vivo data demonstrate that compared to the PEG hydrogel, the SBMA hydrogel enhances the ECM remolding by the upregulation of fibronectin and laminin expression as well as the inhibition of MMP-2. Further investigation reveals that the decreased MMP-2 expression of zwitterionic SBMA hydrogel treatment is due to the activation of autophagy through the inhibited PI3K/Akt/mTOR signaling pathway and reduced inflammation. The association of autophagy with ECM remodeling may provide a way in guiding the design of biomaterial-based wound dressing for chronic wound repair.
Collapse
Affiliation(s)
- Yuan Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shishuang Jiang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liwan Song
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Yao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Kangning Wang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liping Jiang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Cai Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|