1
|
Baioco KS, Pereira R, Ferreira-Gonçalves T, Coelho JMP, Gaspar MM, Reis CP. Combining Phototherapy and Gold-Based Nanomaterials: A Breakthrough in Basal Cell Carcinoma Treatment. Int J Mol Sci 2024; 25:11494. [PMID: 39519051 PMCID: PMC11545837 DOI: 10.3390/ijms252111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of skin carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic, and genetic factors. While conventional treatments such as surgery and topical therapies have demonstrated variable efficacy (some of them with limited efficacy), they are not free of adverse side effects, most of them debilitating. Thus, there is a notable gap in the literature regarding alternative and non-invasive therapeutic options. This review aims to address this gap, exploring the potential of photothermal therapy (PTT) combined with metallic nanoparticles, namely gold nanoparticles (AuNPs), as a minimally invasive treatment approach. Through a comprehensive review of the literature in the period from 2014 to 2024, using experimental investigations, this review seeks to elucidate the intricate interplay between genetic factors, environmental influences, and the tumor microenvironment in BCC disease progression, with PTT as a potential therapeutic strategy. Those studies confirmed an enhanced targeting of cancer cells and selective ablation of tumor tissue, using emerging technologies like PTT. A significant tumor reduction, often exceeding 50%, was observed, with some studies reporting complete elimination of the tumor. The main adverse effects noted were localized skin irritation and transient hyperpigmentation, but these were generally minimal and manageable, highlighting the promise of PTT as an effective treatment. Thus, by leveraging the unique properties of AuNPs to enhance the effectiveness of PTT, the targeting of cancer cells can more precisely occur, reducing collateral damage to healthy tissues. This approach not only aims to achieve better clinical results, but also contributes to the broader knowledge base in the field of BCC research. Continued research and clinical trials will be crucial in refining those techniques and validating their efficacy, ultimately paving the way for more effective and less invasive treatments for BCC.
Collapse
Affiliation(s)
- Karolyne Silva Baioco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Raquel Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (K.S.B.); (R.P.); (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
2
|
Rodrigues R, Figueira ME, Direito R, Bento-Silva A, Ferreira RB, Ribeiro AC. Exploring Lectin Bioactivity and Total Phenolic Compounds in Kiwifruit ( Actinidia deliciosa var. Hayward). Nutrients 2024; 16:3292. [PMID: 39408259 PMCID: PMC11479092 DOI: 10.3390/nu16193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The consumption of kiwifruit (Actinidia deliciosa var. Hayward) is recognized for its health benefits due to its high vitamin C content and bioactive secondary metabolites, such as phenolic compounds with antioxidant properties. These compounds may help prevent chronic noncommunicable diseases, currently the leading cause of death. Additionally, plants and fruits contain proteins like lectins, which contribute to plant defense and may also have health-promoting effects, including antitumor and hypoglycemic activities. OBJECTIVES The objective of this work was to evaluate and identify the phenolic compounds in this variety of kiwifruit, as well as to investigate the lectin activity and the potential dietary benefits of this combination. METHODS This study quantified and identified total phenolic compounds and flavonoids in a kiwifruit extract using HPLC-DAD-MS/MS, and assessed their antioxidant activity through the DPPH method. RESULTS Novel lectin activity was also investigated, with polypeptide characterization and glycoprotein profiling performed. The affinity of lectins for glycans was evaluated using a hemagglutination inhibition assay. Results indicated that kiwifruit lectins bind to glycoreceptors on tumor cell membranes, with a specific affinity for sialic acid, an important glycan in tumor-associated glycomic aberrations. CONCLUSIONS These findings suggest that the bioactive components of kiwifruit may offer multiple health benefits through a synergistic effect.
Collapse
Affiliation(s)
- Raquel Rodrigues
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.); (A.B.-S.); (A.C.R.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.); (A.B.-S.); (A.C.R.)
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.); (A.B.-S.); (A.C.R.)
| | - Ricardo Boavida Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - Ana Cristina Ribeiro
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.); (A.B.-S.); (A.C.R.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| |
Collapse
|
3
|
Raouf N, Darwish ZE, Ramadan O, Barakat HS, Elbanna SA, Essawy MM. The anticancer potential of tetrahydrocurcumin-phytosomes against oral carcinoma progression. BMC Oral Health 2024; 24:1126. [PMID: 39327561 PMCID: PMC11430579 DOI: 10.1186/s12903-024-04856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Herbal medicine combined with nanotechnology offers an alternative to the increasing burden of surgery and/or chemotherapy, the main therapeutics of oral carcinoma. Phytosomes are nano-vesicular systems formed by the interaction between phospholipids and phyto-active components via hydrogen bonding, exhibiting superior efficacy over pure phytocomponents in drug delivery. METHODS Tetrahydrocurcumin (THC)-phytosomes were prepared by thin film hydration method. After characterization, in vitro cytotoxicity, antiproliferative capacity, antioxidant potential and full apoptotic workup were paneled on oral squamous cell carcinoma (SCC4) in comparison with native THC-solution and cisplatin (3.58 µg/mL intravenous injection), as positive controls. In addition, we tested the three medications on normal oral keratinocytes and gingival fibroblasts to attest to their tissue-selectivity. RESULTS Successful preparation of THC-phytosomes using 1:1 molar ratio of THC to phospholipid exhibited significantly increased aqueous solubility, good colloidal properties, and complete drug release after one hour. On SCC4 cells, THC-phytosomes, at their dose-/time-dependency at ~ 60.06 µg/mL escalated cell percentages in the S-phase with 32.5 ± 6.22% increase, as well as a startling 29.69 ± 2.3% increase in apoptotic population. Depletion of the cell colonies survival to 0.29 ± 0.1% together with restraining the migratory rate by -6.4 ± 6.8% validated THC-phytosomes' antiproliferative capacity. Comparatively, the corresponding results of THC-solution and cisplatin revealed 12.9 ± 0.9% and 25.8 ± 1.1% for apoptosis and 0.9 ± 0.1% and 0.7 ± 0.08% for colony survival fraction, respectively. Furthermore, the nanoformulation exhibited the strongest immuno-positivity to caspase-3, which positively correlated with intense mitochondrial fluorescence by Mitotracker Red, suggesting its implication in the mitochondrial pathway of apoptosis, a finding further explained by the enormously high Bax and caspase-8 expression by RT-qPCR. Finally, the THC groups showed the lowest oxidative stress index, marking their highest free radical-scavenging potential among the test groups. CONCLUSIONS THC-phytosomes are depicted to be an efficient nanoformulation that enhanced the anticancer efficacy over the free drug counterpart and the conventional chemotherapeutic. Additionally, being selective to cancer cells and less cytotoxic to normal cells makes THC-phytosomes a potential candidate for tissue-targeted therapy.
Collapse
Affiliation(s)
- Nehal Raouf
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
| | - Zeinab Elsayed Darwish
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Hebatallah S Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shimaa A Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
- Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Dewi MK, Muhaimin M, Joni IM, Hermanto F, Chaerunisaa AY. Fabrication of Phytosome with Enhanced Activity of Sonneratia alba: Formulation Modeling and in vivo Antimalarial Study. Int J Nanomedicine 2024; 19:9411-9435. [PMID: 39282578 PMCID: PMC11402348 DOI: 10.2147/ijn.s467811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sonneratia alba extract exhibits antimalarial activity, mainly due to its secondary metabolites-naphthoquinones, flavonoids, tannins, and saponins-where naphthoquinone is the primary active component. However, its low bioavailability limits its effectiveness. To improve this, a phytosome-based vesicular system was proposed. This study focused on formulating a phytosome with S. alba and developing a predictive model to enhance its antimalarial activity. Methods Phytosomes were produced using antisolvent precipitation and optimized with 3-factor, 3-level Box-behnken model. Particle size, zeta potential, and entrapment efficiency were assessed. The optimized phytosomes were characterized by their physical properties and release profiles. Their antimalarial activity was tested in white BALB/c mice infected with Plasmodium berghei using Peter's 4-day suppressive test. Results The optimal phytosome formulation used a phospholipid-to-extract ratio of 1:3, reflux temperature of 50°C, and a duration of 2.62 hours. The phytosomes had a particle size of 471.8 nm, a zeta potential of -54.1 mV, and an entrapment efficiency (EE) of 82.4%. In contrast, the phytosome-fraction showed a particle size of 233.4 nm, a zeta potential of -61.5 mV, and an EE of 87.08%. TEM analysis confirmed both had a spherical shape. In vitro release rates at 24 hours were 86.2 for the phytosome-extract and 95.9% for the phytosome-fraction, compared to 46.9% and 37.7% for the extract and fraction alone. Overall, the phytosome formulation demonstrated good stability. The actual experimental values closely matched the predicted values from the Box-Behnken model, indicating a high degree of accuracy in the model. Additionally, the phytosomes exhibited significantly greater antimalarial activity than the S. alba extract and fraction alone. Conclusion The findings indicated that the vesicular formulation in phytosomes can enhance the antimalarial activity of S. alba extract and fraction.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
5
|
Ramadan MM, Mohamed RS, Hussien AG, Mohawed OA, Mabrouk AM, Mahmoud AE, Ghanem KZ, El-Messery TM. Ameliorative effects of vitamins-loaded flavoured nanophytosomes fortified with star anise volatile oil against CsA-Induced liver and kidney injury in rats: Application in functional ice cream. Heliyon 2024; 10:e23894. [PMID: 38226243 PMCID: PMC10788501 DOI: 10.1016/j.heliyon.2023.e23894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
This study investigated the effect of flavoured nanophytosomes loaded with vitamins A, E, D, B complex, folic acid, and C, as well as zinc on the immunosuppressive cyclosporin A (CsA)-induced liver and kidney injury in male rats. The vitamins flavoured nanophytosomes (VFnPs) were characterized in terms of particle size, zeta potential, encapsulation efficiency. Ice cream was flavoured with star anise volatile oil to mask the VFnPs' flavour and unacceptable taste. The study found that treatment with CsA alone resulted in increased (P > 0.05) levels of creatinine, urea, and MDA, as well as the activities of AST and ALT, while the levels of SOD, CAT, GST, proteins, CD4, INF-ᵧ, IL-6, IL-1β, and TLR4 decreased (P > 0.05). However, the group that received CsA simultaneously with VFnPs showed a significant (P > 0.05) decrease in the levels of creatinine, urea, and MDA, as well as the activities of AST and ALT, and increased (P > 0.05) levels of SOD, CAT, GST, proteins, CD4, INF-ᵧ, IL-6, IL-1β, and TLR4. The increase in the ratio of VFnPs had little effect on the physiochemical and sensory evaluation of the ice cream. Finally, the study suggests that VFnPs could potentially protect against CsA-induced liver and kidney injury and serve as a promising natural therapy for treating such conditions.
Collapse
Affiliation(s)
- Manal M. Ramadan
- Chemistry of Flavour and Aroma Department, National Research Centre, Cairo, Egypt
| | - Rasha S. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Amal G. Hussien
- Biochemistry Department, Biotechnology Research Institute, National Research Centre. Cairo, Egypt
| | - Ola A.M. Mohawed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre. Cairo, Egypt
| | - Ahmed M. Mabrouk
- Dairy Science Department, National Research Centre, Cairo, Egypt
| | - Abeer E. Mahmoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre. Cairo, Egypt
| | - Kadry Z. Ghanem
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Tamer M. El-Messery
- International Research Centre “Biotechnologies of the Third Millennium”, ITMO University, St. Petersburg, 191002, Russia
| |
Collapse
|
6
|
Jelveh K, Mottaghitalab M, Mohammadi M. Effects of green tea phytosome on growth performance and intestinal integrity under coccidiosis infection challenge in broilers. Poult Sci 2023; 102:102627. [PMID: 36996511 PMCID: PMC10074246 DOI: 10.1016/j.psj.2023.102627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This research examined the effects of feeding phytosomal green tea on broilers infected with coccidia. To provide phytosome, green tea extract was loaded into soy lecithin. Groups of chicks included uninfected and untreated control (NC), infected and untreated control (PC), infected and treated with salinomycin control (SC), infected and treated with 300 and 400 mL of green tea extract (GTE300, GTE400), infected and treated with 200, 300, 400 and 500 mL of green tea phytosome (GTP200, GTP300, GTP400, and GTP500). At 14-days posthatch, chickens were orally gavaged, except the NC group with a coccidia vaccine 30 times larger than the approved dose. Body weight (BW), feed intake (FI), and feed conversion ratio (FCR) were determined at 7, 14, 20, 28, 35, and 42 d. The characteristics of the carcass, internal organs and intestinal morphology were assessed on d 42. Applying overdose of coccidiosis vaccine showed experimental Eimeria infection, led to decrease in FI and BW, and increased FCR compared to PC group (P < 0.001). Meanwhile salinomycin, green tea extract, and green tea phytosome compensated the negative effects of Eimeria infection on growth performance. The treatments did not affect carcass, breast, and thigh relative weights. Interestingly, abdominal fat percent was significantly lower in chickens fed GTP300, GTP400, and GTP500 than in those fed GTE300, GTE300, and GTP200 (P < 0.0001). In comparison to the basal diet plus green tea extract forms and NC groups, the PC group increased the relative weights of the liver, spleen, bursa, and pancreas (P < 0.05). The highest values of villus height and villus height to crypt ratio were obtained in duodenum, jejunum and ileum in GTP300 group (P < 0.0001), while, villi diameter in duodenum and ileum decreased the most in GTP300 and GTP500, respectively (P < 0.0001). Consequently, as natural anticoccidial drug delivery systems, 300 mL of green tea phytosome can be introduced as the optimal dose to maximize the benefits of phytosome for intestinal integrity and reduce the consumption of green tea extract.
Collapse
|
7
|
Enhancement of solubility, thermal stability and bioaccessibility of vitexin using phosphatidylcholine-based phytosome. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
8
|
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals (Basel) 2023; 16:196. [PMID: 37259344 PMCID: PMC9961076 DOI: 10.3390/ph16020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies.
Collapse
Affiliation(s)
- Rachna M. Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
9
|
Antioxidant, Anti-Inflammatory and Attenuating Intracellular Reactive Oxygen Species Activities of Nicotiana tabacum var. Virginia Leaf Extract Phytosomes and Shape Memory Gel Formulation. Gels 2023; 9:gels9020078. [PMID: 36826248 PMCID: PMC9956251 DOI: 10.3390/gels9020078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Oxidative stress is one of the major causes of skin aging. In this study, the shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts. The extracts were loaded in the phytosomes by a solvent displacement method. The physical and chemical characteristics and stability of phytosomes were evaluated by dynamic light scattering and phytochemistry, respectively. The in vitro antioxidant activity and intracellular reactive oxygen species reduction of phytosomes and/or extracts were investigated by the DPPH and ABTS radical scavenging assays, FRAP assay, and DCFH-DA fluorescent probe. The cytotoxicity and anti-inflammatory activity of VDL and VFL phytosomes were studied by an MTT and a nitric oxide assay, respectively. Here, we first reported the total phenolic content in the dry leaf extract of N. tabacum var. Virginia was significantly greater than that of the fresh leaf extract. The HPLC analysis results revealed that VDL and VFL extracts contained 4.94 ± 0.04 and 3.13 ± 0.01 µg/mL of chlorogenic acid and 0.89 ± 0.00 and 0.24 ± 0.00 µg/mL of rutin, respectively. The phytosomes of the VDL and VFL extracts displayed stable size, polydispersity index, zeta potential values, and good chemical stability. VDL and VDL phytosomes showed higher phenolic and flavonoid contents which showed stronger DPPH and ABTS radical scavenging effects and reduced the intracellular ROS. The results suggested that the phenolic compounds are the main factor in their antioxidant activity. Both VDL and VFL phytosomes inhibited nitric oxide production induced by LPS, suggesting the anti-inflammatory activity of the phytosomes. The shape memory gel containing VDL and VFL phytosomes had good physical stability in terms of pH and viscosity. The VDL and VFL phytosomes dispersed in the shape memory gels can be considered as a promising therapeutic delivery system for protecting the skin from oxidation and reactive oxygen species.
Collapse
|
10
|
In vitro digestibility of Aucklandia costus-loaded nanophytosomes and their use in yoghurt as a food model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mall SK, Yadav T, Waziri A, Alam MS. Treatment opportunities with Fernandoa adenophylla and recent novel approaches for natural medicinal phytochemicals as a drug delivery system. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fernandoa adenophylla (FA, Heterophragma adenophyllum) is a plant, cultivated throughout Africa and Southeast Asia. It contains potent phytochemicals such as novel naphthoquinones, their derivatives (peshwaraquinone, dilapachone, adenophyllone, indadone, and lapachol), and triterpenoids [ursolic acid (UA), β-sitosterol (BS), α-amyrin, and oleanolic acid (OA)] that have been assessed and reported to show potential pharmacological activities. The crude extract obtained from the plant has been investigated for certain pharmacological activities such as antibacterial, antifungal, anti-tubercular (TB), antihypertensive, and leishmanicidal activity. A novel drug delivery systems (NDDS) is the latest technique that combines innovative development, formulations, new technology, and methodologies for the safe delivery of pharmaceutical substances in the body. The present study reports the possible treatment opportunities of FA and recent possible novel drug delivery approaches for the natural medicinal phytochemicals.
Collapse
Affiliation(s)
- Sangeet Kumar Mall
- NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur 303121, India
| | - Tejpal Yadav
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur 303121, India
| | - Aafrin Waziri
- Department of Biotechnology, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi 110078, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University Gurugram, Delhi-NCR, Haryana 122505, India
| |
Collapse
|
12
|
Alshahrani SM. Optimization and Characterization of Cuscuta reflexa Extract Loaded Phytosomes by the Box-Behnken Design to Improve the Oral Bioavailability. J Oleo Sci 2022; 71:671-683. [PMID: 35387912 DOI: 10.5650/jos.ess21318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to determine whether the complexing hydroalcoholic extract of Cuscuta reflexa (HECR) with phosphatidyl choline increases its bioavailability. As a result, a novel phytosomal delivery system for the HECR-soya lecithin complex was developed (HECR-phytosome). The HECR-phytosome complex was synthesized and characterized as phytovesicles. The formulation was prepared using a variable concentration of soya lecithin (1:1-1:3 percent w/v), a temperature range of (45- 65°C), and sonication time (4-8 min). Optimization of HECR-loaded phytosomal formulations was performed using Design Expert software. A three-factor, three-level Box-Behnken design was used to optimize this HECR delivery system, as dependent variables, vesicular size and entrapment efficiency were evaluated using a Box Behnken factorial design. Further characterization of the optimized formulation included vesicle size, PDI, zeta potential, entrapment efficiency, FTIR, DSC, TEM, and in vitro release. Vesicle sizes ranged from 173.5±6.17 nm to 215.9±6.53 nm, and response rates for entrapment efficiency ranged from 52.9±1.65 to 77.2±1.1%. The uniform structure and spherical shape were demonstrated by transmission electron microscopy. Among the drug release kinetic models, the formulation followed the Higuchi model (R2 = 0.9978), releasing 96.3±3.7% of the polyphenol and flavonoids phytoconstituents from HECR-loaded phytosomes in 12 hours, compared to 49.3±2.5% in the plain extract. In addition, the optimized formulation passes the stability test. Therefore, the results demonstrated that phytosomal nanocarriers have the potential to increase the bioavailability of Cuscuta reflexa extract.
Collapse
Affiliation(s)
- Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy Prince Sattam Bin Abdulaziz University
| |
Collapse
|
13
|
Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes. Sci Pharm 2022. [DOI: 10.3390/scipharm90010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Daemonorops (Indonesian: jernang) resin is one of Indonesia’s leading non-timber forest products and can be developed as a source of natural antioxidants and sun protection. This study aimed to select promising solvents for extracting a Daemonorops acehensis resin and phytosome formulation with high antioxidant capacities and sun protection factor (SPF) values. Jernang resin was extracted using a water–ethanol mixture in five different ratios. The promising extract was then mixed with soy lecithin in three different formulations. A promising extract and phytosome were then selected based on their antioxidant capacities and sun protection factor (SPF) values. A liquid chromatography mass spectrometry/mass spectrometry (LC–MS/MS) analysis was also performed on five extracts to identify the components in the extracts that might be responsible for the biological activity. The results showed that the ethanol solvent variation and phytosome formulation influenced the antioxidant capacity and SPF value. A hundred-percent ethanolic extract and F1 phytosome exhibited the highest antioxidant capacities and SPF values. A qualitative analysis revealed the various classes of compounds in the extract and phytosome. A flavylium chromophore, dracorhodin, dominated the resin extract and was presumed to be the marker compound responsible for their antioxidant capabilities and SPF values. These findings are important for manufacturing sunscreens containing active compounds of bioactive natural resins.
Collapse
|
14
|
Rajamma SS, Krishnaswami V, Prabu SL, Kandasamy R. Geophila repens phytosome-loaded intranasal gel with improved nasal permeation for the effective treatment of Alzheimer's disease. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Intsia bijuga Heartwood Extract and Its Phytosome as Tyrosinase Inhibitor, Antioxidant, and Sun Protector. FORESTS 2021. [DOI: 10.3390/f12121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intsia bijuga (Colebr.) wood (Indonesian: Merbau) is commercial wood with high economic value and is most commonly found in Indonesia. Intsia wood extractives have biological activities related to their potential as natural active ingredients for antiaging cosmetics This study aimed to select the best extraction solvent and phytosome formulation of I. bijuga heartwood extract as an active ingredient for topical antiaging cosmetics. There were five and three variations on extraction solvent and phytosome formulation, respectively. Three main antiaging activity parameters, namely antioxidant, antityrosinase, and sun protection factor (SPF) values, were considered in selecting the best extract and phytosome formula. The results showed that 50% ethanol possessed good antioxidant and antityrosinase activity, but was lower in SPF value, which was significantly different than in other extracts. The phytochemical profile revealed robidanol and robinetin as the main constituent in five I. bijuga extracts. Phytosome F3 possessed high antioxidant, antityrosinase, and SPF values compared to other 50% ethanol phytosome extracts. It could be concluded that I. bijuga ethanol extracts and its phytosome are potent enough to be developed as an antiaging active ingredient in topical use cosmetics.
Collapse
|
16
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
17
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021; 13:3283. [PMID: 34579162 PMCID: PMC8465508 DOI: 10.3390/nu13093283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
Persimmon (Diospyros kaki L.) fruit's phytochemical profile includes carotenoids, proanthocyanidins, and gallic acid among other phenolic compounds and vitamins. A huge antioxidant potential is present given this richness in antioxidant compounds. These bioactive compounds impact on health benefits. The intersection of nutrition and sustainability, the key idea behind the EAT-Lancet Commission, which could improve human health and decrease the global impact of food-related health conditions such as cancer, heart disease, diabetes, and obesity, bring the discussion regarding persimmon beyond the health effects from its consumption, but also on the valorization of a very perishable food that spoils quickly. A broad option of edible products with better storage stability or solutions that apply persimmon and its byproducts in the reinvention of old products or even creating new products, or with new and better packaging for the preservation of food products with postharvest technologies to preserve and extend the shelf-life of persimmon food products. Facing a global food crisis and the climate emergency, new and better day-to-day solutions are needed right now. Therefore, the use of persimmon waste has also been discussed as a good solution to produce biofuel, eco-friendly alternative reductants for fabric dyes, green plant growth regulator, biodegradable and edible films for vegetable packaging, antimicrobial activity against foodborne methicillin-resistant Staphylococcus aureus found in retail pork, anti-Helicobacter pylori agents from pedicel extracts, and persimmon pectin-based emulsifiers to prevent lipid peroxidation, among other solutions presented in the revised literature. It has become clear that the uses for persimmon go far beyond the kitchen table and the health impact consumption demonstrated over the years. The desired sustainable transition is already in progress, however, mechanistic studies and clinical trials are essential and scaling-up is fundamental to the future.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
18
|
Kumar S, Baldi A, Sharma DK. In vitro antioxidant assay guided ex vivo investigation of cytotoxic effect of phytosomes assimilating taxifolin rich fraction of Cedrus deodara bark extract on human breast cancer cell lines (MCF7). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
20
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021; 13:pharmaceutics13020145. [PMID: 33499333 PMCID: PMC7912052 DOI: 10.3390/pharmaceutics13020145] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Non-communicable chronic diseases (NCDs) are nowadays the principal cause of death, especially in most industrialized nations. These illnesses have increased exponentially with the consumption of diets very high in fat and sugar, not to mention stress and physical inactivity among other factors. The potential impact of suboptimal diets on NCDs’ morbidity and mortality rates brings to the forefront the necessity for a new way of improving dietary habits. The literature provides extensive scientific work that presents evidence that phenolic compounds from diets have antioxidant, anti-inflammatory and antiproliferative activities that impact human health. Gut microbiota modulation by some phenolic compounds leads to favorable changes in abundance, diversity, and in the immune system. However, polyphenol’s limited bioavailability needs to be overcome, highlighting their application in new delivery systems and providing their health benefits in well-established ways such as health maintenance, treatment or adjuvant to conventional pharmacological treatments. In this context, novel dietary approaches, including new food supplements, have emerged to prevent diseases and preserve health.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Correspondence: ; Tel.: +351-96-3654-899
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
21
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
22
|
Phytosomes as Emerging Nanotechnology for Herbal Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41838-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|