1
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Liu N, Cui X, Guo T, Wei X, Sun Y, Liu J, Zhang Y, Ma W, Yan W, Chen L. Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. Antioxidants (Basel) 2024; 13:1246. [PMID: 39456499 PMCID: PMC11505556 DOI: 10.3390/antiox13101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant Scutellaria baicalensis Georgi, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body Glp1r ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca2+/CaMKII-AMPK-GLUT4 signal pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Weina Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an 710061, China
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
Ma S, Wei T, Zhang B, Zhang Y, Lai J, Qu J, Liu J, Yin P, Shang D. Integrated pharmacokinetic properties and tissue distribution of multiple active constituents in Qing-Yi Recipe: A comparison between granules and decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155645. [PMID: 38643714 DOI: 10.1016/j.phymed.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Qing-Yi Recipe, a classic traditional Chinese medicine (TCM), is widely used for treating acute diseases of the abdomen, especially pancreatitis, the efficacy of which has been demonstrated in more than thirty clinical trials. However, the in-vivo pharmacodynamic material basis for this formula remains unclear. METHODS A sensitive and accurate method for quantifying twenty-two potential bioactive constituents of Qing-Yi Recipe in biological samples was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and this method was fully validated. Then, the integrated pharmacokinetic properties of Qing-Yi Recipe and its major metabolites in rats were investigated using the post-listed granules at both dosages. Subsequently, tissue distributions of those constituents in nine organs (especially the pancreas) were determined, and the overall parameters between the two formulations were compared. RESULTS Though the chemical profiles of the formulas varied across formulations, the overall exposure level was very similar, and baicalin, wogonoside, geniposide, rhein, costunolide, and paeoniflorin were the top six bioactive compounds in the circulation. All twenty-two natural products reached their first peak within 2 h, and several of them exhibited bimodal or multimodal patterns under the complicated transformation of metabolic enzymes, and the parameters of these products markedly changed compared with those of monomers. Diverse metabolites of emodin and baicalin/baicalein were detected in circulation and tissues, augmenting the in vivo forms of these compounds. Finally, the enrichment of tetrahydropalmatine and corydaline in the pancreas were observed and most compounds remained in the gastrointestinal system, providing a foundation basis for their potential regulatory effects on the gut microbiota as well as the intestinal functions. CONCLUSION Herein, the pharmacokinetic properties and tissue distribution of multiple potential active constituents in Qing-Yi Recipe were investigated at two dosages, providing a pharmacodynamic material basis of Qing-Yi Recipe for the first time. This investigation is expected to provide a new perspective and reference for future studies on the physiological disposition and potential pharmacodynamic basis of traditional Chinese medicine to treat acute abdomen diseases.
Collapse
Affiliation(s)
- Shurong Ma
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Tianfu Wei
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Biao Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Yunshu Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Jinwen Lai
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Jianjun Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China
| | - Peiyuan Yin
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China.
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116000, PR China.
| |
Collapse
|
4
|
Kuhnert L, Kuhnert R, Sárosi MB, Lakoma C, Scholz BK, Lönnecke P, Hey‐Hawkins E, Honscha W. Enhanced reversal of ABCG2-mediated drug resistance by replacing a phenyl ring in baicalein with a meta-carborane. Mol Oncol 2024; 18:280-290. [PMID: 37727134 PMCID: PMC10850795 DOI: 10.1002/1878-0261.13527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron-based clusters as meta-carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta-carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2-mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7-trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 μm without reversing mitoxantrone resistance, its carborane analogue 5,6,7-trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 μm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta-carborane and three methoxy substituents leads to an enhanced reversal of ABCG2-mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.
Collapse
Affiliation(s)
- Lydia Kuhnert
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and ToxicologyUniversität LeipzigGermany
| | - Robert Kuhnert
- Faculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryUniversität LeipzigGermany
| | - Menyhárt B. Sárosi
- Center for Nanosystems Chemistry (CNC)Universität WürzburgGermany
- Institut für Organische ChemieUniversität WürzburgGermany
| | - Cathleen Lakoma
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and ToxicologyUniversität LeipzigGermany
| | - Birte K. Scholz
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and ToxicologyUniversität LeipzigGermany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryUniversität LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryUniversität LeipzigGermany
| | - Walther Honscha
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and ToxicologyUniversität LeipzigGermany
| |
Collapse
|
5
|
Espíndola C. Some Nanocarrier's Properties and Chemical Interaction Mechanisms with Flavones. Molecules 2023; 28:molecules28062864. [PMID: 36985836 PMCID: PMC10051830 DOI: 10.3390/molecules28062864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.
Collapse
Affiliation(s)
- Cecilia Espíndola
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| |
Collapse
|
6
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. GENES & NUTRITION 2023; 18:4. [PMID: 36906524 PMCID: PMC10008604 DOI: 10.1186/s12263-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/25/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Flavonoids may help ameliorate the incidence of the major causes of tumor-related mortality, such as pancreatic ductal adenocarcinoma (PDAC) and lung cancer, which are predicted to steadily increase between 2020 to 2030. Here we compared the effect of chrysin and chrysin nanoparticles (CCNPs) with 5-fluorouracil (5-FLU) on the activity and expression of mitochondrial complex II (CII) to induce apoptosis in pancreatic (PANC-1) and lung (A549) cancer cells. METHODS Chrysin nanoparticles (CCNPs) were synthesized and characterized, and the IC50 was evaluated in normal, PANC-1, and A549 cell lines using the MTT assay. The effect of chrysin and CCNPs on CΙΙ activity, superoxide dismutase activity, and mitochondria swelling were evaluated. Apoptosis was assessed using flow cytometry, and expression of the C and D subunits of SDH, sirtuin-3 (SIRT-3), and hypoxia-inducible factor (HIF-1α) was evaluated using RT-qPCR. RESULTS The IC50 of CII subunit C and D binding to chrysin was determined and used to evaluate the effectiveness of treatment on the activity of SDH with ubiquinone oxidoreductase. Enzyme activity was significantly decreased (chrysin < CCNPs < 5-FLU and CCNPs < chrysin < 5-FLU, respectively), which was confirmed by the significant decrease of expression of SDH C and D, SIRT-3, and HIF-1α mRNA (CCNPs < chrysin < 5-FLU). There was also a significant increase in the apoptotic effects (CCNPs > chrysin > 5-FLU) in both PANC-1 and A549 cells and a significant increase in mitochondria swelling (CCNPs < chrysin < 5-FLU and CCNPs > chrysin > 5-FLU, respectively) than that in non-cancerous cells. CONCLUSION Treatment with CCNPs improved the effect of chrysin on succinate-ubiquinone oxidoreductase activity and expression and therefore has the potential as a more efficient formulation than chemotherapy to prevent metastasis and angiogenesis by targeting HIF-1α in PDAC and lung cancer.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Hanioka N, Tanaka-Kagawa T, Mori Y, Ikushiro S, Jinno H, Ohkawara S, Isobe T. Regioselective Glucuronidation of Flavones at C5, C7, and C4′ Positions in Human Liver and Intestinal Microsomes: Comparison among Apigenin, Acacetin, and Genkwanin. Biol Pharm Bull 2022; 45:1116-1123. [DOI: 10.1248/bpb.b22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy
| |
Collapse
|
8
|
|
9
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Pourbagher-Shahri AM, Samarghandian S. Promising Protective Effects of Chrysin in Cardiometabolic Diseases. Curr Drug Targets 2021; 23:458-470. [PMID: 34636295 DOI: 10.2174/1389450122666211005113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cardiometabolic diseases (CMD) have a great burden in terms of morbidity and mortality worldwide. The vicious cycle of CMD consists of type II diabetes, hypertension, dyslipidemia, obesity, and atherosclerosis interacting and feedbacking each other. The natural flavonoid chrysin has been displayed to own a broad spectrum of therapeutic impacts for human health. Herein, we did an in-depth investigation of the novel mechanisms of chrysin's cardioprotection against cardiometabolic disorder. Studies have shown that chrysin protects the cardiovascular system by enhancing the intrinsic antioxidative defense system. This antioxidant boost by chrysin protects against several risk factors of cardiometabolic disorders including atherosclerosis, vascular inflammation and dysfunction, platelet aggregation, hypertension, dyslipidemia, cardiotoxicity, myocardial infarction, injury and remodeling, diabetes-induced injuries, and obesity. Chrysin also exhibited anti-inflammatory mechanisms through inhibiting pro-inflammatory pathways including NF-κB, MAPK, and PI3k/Akt. Furthermore, chrysin modulated NO pathway, RAS system, AGE/RAGE pathway, PPARs pathway which contributed to the risk factors of cardiometabolic disorders. Taken together, the mechanisms in which chrysin protects against cardiometabolic disorder are more than merely antioxidation and anti-inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019. United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense. Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
10
|
Gao S, Siddiqui N, Etim I, Du T, Zhang Y, Liang D. Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed Pharmacother 2021; 142:112080. [PMID: 34449320 PMCID: PMC8653576 DOI: 10.1016/j.biopha.2021.112080] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysin is a promising naturally occurring flavonoid mainly found in honey and propolis. Although chrysin's biological activities have been demonstrated and the mechanism of actions has been determined using in vitro and in vivo models, results from the current clinical studies were largely negative. A potential reason for chrysin's low efficacy in humans is poor oral bioavailability. In this paper, we reviewed the preclinical and clinical pharmacokinetics studies of chrysin and analyzed the mechanism of poor in vivo efficacy with emphasis on its bioavailability and ADME mechanism. Low aqueous solubility, rapid metabolism mediated by UGTs and SULT, efficient excretion through efflux transporters including BCRP and MRP2 are the major reasons causing poor systemic bioavailability for chrysin. However, because of efficient enterohepatic recycling facilitated by phase II metabolism and efflux, chrysin's bioavailability in the low GI tract is high. Thus, chrysin can be ideal for treating diseases in the terminal ileum and colon (e.g., carcinoma, local infection) since it is localized in the lower GI tract with limited delivery to other organs.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004.
| | - Nyma Siddiqui
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004
| | - Imoh Etim
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004
| | - Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004
| | - Yun Zhang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, USA 77004
| |
Collapse
|
11
|
Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7285-7302. [PMID: 34160206 DOI: 10.1021/acs.jafc.1c02015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavones are an important class of bioactive constituents in foods, and their structural diversity enables them to interact with different targets. In particular, flavones are known for their anti-inflammatory activity. Herein, we summarized commonly applied in vitro, in vivo, and clinical models in testing anti-inflammatory activity of flavones. The anti-inflammatory structure-activity relationship of flavones was systematically mapped and supported with cross comparisons of that with flavanones, flavanols, and isoflavones. Hydroxyl groups (-OH) are indispensable for the anti-inflammatory function of flavones, and -OH at the C-5 and C-4' positions enhance while -OH at the C-6, C-7, C-8, and C-3' positions attenuate their activity. Moreover, the C2-C3 single bond, -OH at the C-3 and B-ring positions undermine flavone aglycones' activity. Most of the flavone aglycones function through NF-κB, MAPK, and JNK-STAT pathways, and their possible cell binding targets are kinase, aryl hydrocarbon receptor (AhR), G-protein coupled receptors, and estrogen receptors. However, the structure and anti-inflammatory activity relationship of flavones were unclear, and further research shall be conducted to close the gap in order to guide development of evidence-based functional foods.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Yujia Cao
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Siyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jiachen Lin
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, PR China
| |
Collapse
|
12
|
Herbal Medicinal Products from Passiflora for Anxiety: An Unexploited Potential. ScientificWorldJournal 2020; 2020:6598434. [PMID: 32765195 PMCID: PMC7387951 DOI: 10.1155/2020/6598434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines containing Passiflora species have been widely used to treat anxiety since ancient times. The species Passiflora incarnata L. is included in many Pharmacopoeias, and it is the most used species in food, cosmetic, and pharmaceutical industries. However, there are around 600 species of the genus Passiflora and probably other species that can be used safely. Thus, this article was based on a search into the uses of the main species of the genus Passiflora with anxiolytic activity and its main secondary metabolites and some pharmacological studies, patents, and registered products containing Passiflora. Furthermore, the Brazilian Regulatory Health Agency Datavisa, Medicines and Healthcare Products Regulatory Agency of the United Kingdom, and the European Medicines Agency websites were consulted. The results showed that Passiflora species have health benefits but clinical trials are still scarce. The complexity of Passiflora extracts creates challenges for the development of herbal medicines. P. incarnata is the most studied species of the genus and the most used in natural anxiolytic herbal medicine formulations. However, there are hundreds of Passiflora species potentially useful for medicinal and nutraceutical purposes that are still little explored.
Collapse
|
13
|
Current biological and pharmacological updates on wogonin. EXCLI JOURNAL 2020; 19:635-640. [PMID: 32536834 PMCID: PMC7290105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/03/2020] [Indexed: 10/30/2022]
|
14
|
Abundant Extractable Metabolites from Temperate Tree Barks: The Specific Antimicrobial Activity of Prunus Avium Extracts. Antibiotics (Basel) 2020; 9:antibiotics9030111. [PMID: 32143394 PMCID: PMC7148530 DOI: 10.3390/antibiotics9030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Tree barks are mainly considered as wood wastes from forestry activities, but represent valuable resources as they may contain antimicrobial compounds. Here, we aimed to evaluate the possible antimicrobial activities of bark extracts and to characterize the chemical composition of the most active extract. Ten methanol bark extracts were tested in vitro against 17 bacterial strains and 5 yeast strains, through minimum inhibitory concentration (MIC) and minimum bactericidal (or fungicidal) concentration (MBC/MFC) assays. The extract from Prunus avium (E2-4) displayed the largest bactericidal activity against Gram-positive bacteria, with a lethal effect on 6 out of 8 strains. Antibiofilm assays of E2-4 were performed by crystal violet staining and enumeration of adhered bacteria. Assays demonstrated a biofilm inhibitory effect of E2-4 against Staphylococcus aureus CIP 53.154 at concentrations equal to or higher than 250 µg/mL. Chemical profiling of E2-4 by 13C nuclear magnetic resonance (NMR) revealed the presence of dihydrowogonin as a major constituent of the extract. E2-4 was fractionated by centrifugal partition chromatography and the three fractions containing dihydrowogonin were tested for their antibacterial and antibiofilm activities, revealing similar activities to those of E2-4. Dihydrowogonin was positively assessed as an interesting antimicrobial compound, which could be valued from wastes of Prunus avium barks.
Collapse
|