1
|
Wang Y, Lin M, Fan T, Zhou M, Yin R, Wang X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int J Nanomedicine 2025; 20:1-24. [PMID: 39776491 PMCID: PMC11700880 DOI: 10.2147/ijn.s495387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy. In recent years, stimuli-responsive amphiphilic copolymer micelles have attracted significant attention. These micelles can respond to specific stimuli, including physical triggers (light, temperature, etc). chemical stimuli (pH, redox, etc). and physiological factors (enzymes, ATP, etc). Under these stimuli, the structures or properties of the micelles can change, enabling targeted therapy and controlled drug release in tumors. These stimuli-responsive strategies offer new avenues and approaches to enhance the tumor efficacy and reduce drug side effects. We will review the applications of different types of stimuli-responsive amphiphilic copolymer micelles in tumor therapy, aiming to provide valuable guidance for future research directions and clinical translation.
Collapse
Affiliation(s)
- Yao Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Meng Lin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tianfei Fan
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Minglu Zhou
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ruxi Yin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
2
|
Li S, Cheng S, Du Y, Yan L, Wu J, Han L, Zhu N. Selective Synthesis of Vinyl Sulfides or 2-Methyl Benzothiazoles from Disulfides and CaC 2 Mediated by a Trisulfur Radical Anion. J Org Chem 2024; 89:18028-18038. [PMID: 39601664 DOI: 10.1021/acs.joc.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this report, we have established a novel and efficient method for selectively synthesizing either vinyl sulfides or 2-methylbenzothiazoles from the reaction of CaC2 and disulfides. The selective synthesis of these two distinct products can be controlled by simply adjusting the amount of K2S. The underlying reaction mechanism has been thoroughly investigated through control experiments, HRMS, and FTIR, which collectively support the pivotal role of a trisulfur radical anion. This radical species, generated in situ from K2S, is essential for the homolytic cleavage of the S-S bonds in a catalytic manner. Additionally, the trisulfur radical anion also acts as an effective mediator for activating the vinyl group of 2-aminophenyl vinyl sulfides, facilitating the crucial intramolecular cyclization required to produce 2-methylbenzothiazoles. Moreover, CaC2 not only serves as an acetylene source but also creates the basic conditions essential for the selective formation of vinyl sulfides. This methodology demonstrates broad substrate compatibility and excellent functional group tolerance, significantly enhancing its practical utility in diverse synthetic applications.
Collapse
Affiliation(s)
- Shuyi Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Siliu Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yunzhe Du
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Ligang Yan
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jiakai Wu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Limin Han
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010070, China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
3
|
Zhao F, Kim JC. Effect of phenolic acids on temperature-sensitive property of self-assembly of ionic pair of poly(ethylene imine)/(phenylthio)acetic acid. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Park SC, Sharma G, Kim JC. Temperature- and oxidation-dependent doxorubicin release from poly(hydroxyethyl acrylate-co-phenyl vinyl sulfide) cryogel. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Zhou T, Wu L, Ma N, Tang F, Chen J, Jiang Z, Li Y, Ma T, Yang N, Zong Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer. Bioeng Transl Med 2023; 8:e10368. [PMID: 36684111 PMCID: PMC9842049 DOI: 10.1002/btm2.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lili Wu
- Department of Medical UltrasonicsThird Affiliated Hospital of Sun Yat‐sen University, Guangdong Key Laboratory of Liver Disease ResearchGuangzhouGuangdongChina
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jialin Chen
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Na Yang
- Department of Clinical LaboratoryGuangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Zhen Zong
- Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
6
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Park SC, Sharma G, Kim JC. Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Soo Chan Park
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Yoon DY, Alle M, Kim JC. Reduction and temperature-responsive hydrogel composed of hydroxyethyl disulfide-bis-glycidyl ether-crosslinked poly(hydroxyethyl acrylate-co-methyl methacrylate). INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1871613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Youl Yoon
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
10
|
Bixin loaded on polymeric nanoparticles: synthesis, characterization, and antioxidant applications in a biological system. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01555-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhang J, Tang X, Huang C, Liu Z, Ye Y. Oleic Acid Copolymer as A Novel Upconversion Nanomaterial to Make Doxorubicin-Loaded Nanomicelles with Dual Responsiveness to pH and NIR. Pharmaceutics 2020; 12:pharmaceutics12070680. [PMID: 32698309 PMCID: PMC7408047 DOI: 10.3390/pharmaceutics12070680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Oleic acid (OA) as main component of plant oil is an important solvent but seldom used in the nanocarrier of anticancer drugs because of strong hydrophobicity and little drug release. In order to develop a new type of OA nanomaterial with dual responses to pH and near infrared light (NIR) to achieve the intelligent delivery of anticancer drugs. The novel OA copolymer (mPEG-PEI-(NBS, OA)) was synthesized by grafting OA and o-nitrobenzyl succinate (NBS) onto mPEGylated polyethyleneimine (mPEG-PEI) by amidation reaction. It was further conjugated with NaYF4:Yb3+/Er3+ nanoparticles, and encapsulated doxorubicin (DOX) through self-assembly to make upconversion nanomicelles with dual response to pH and NIR. Drug release behavior of DOX, physicochemical characteristics of the nanomicelles were evaluated, along with its cytotoxic profile, as well as the degree of cellular uptake in A549 cells. The encapsulation efficiency and drug loading capacity of DOX in the nanomicelles were 73.84% ± 0.58% and 4.62% ± 0.28%, respectively, and the encapsulated DOX was quickly released in an acidic environment exposed to irradiation at 980 nm. The blank nanomicelles exhibited low cytotoxicity and excellent biocompatibility by MTT assay against A549 cells. The DOX-loaded nanomicelles showed remarkable cytotoxicity to A549 cells under NIR, and promoted the cellular uptake of DOX into the cytoplasm and nucleus of cancer cells. OA copolymer can effectively deliver DOX to cancer cells and achieve tumor targeting through a dual response to pH and NIR.
Collapse
Affiliation(s)
| | | | | | | | - Yong Ye
- Correspondence: ; Tel.: +86-20-87110234
| |
Collapse
|
12
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|