1
|
Dell’Aquila AM, dos Reis GNB, Cuba GT, Targa WHDC, Bongiovanni JC, Durigon TS, Salles MJ, dos Reis FB. Outcome and Predictors of Treatment Failure in Chronic Osteomyelitis Using Bioactive Glass Granules and Putty Formulations. Antibiotics (Basel) 2023; 12:1720. [PMID: 38136754 PMCID: PMC10740565 DOI: 10.3390/antibiotics12121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The aim of this study is to evaluate the outcome of patients with cavitary chronic osteomyelitis undergoing adjuvant treatment with bioactive glass (BAG) S53P4 and identify the independent risk factors (RFs) for recurrence in 6- and 12-month patient follow-up. METHODS A retrospective, multicentre observational study conducted in tertiary specialised hospitals among patients undergoing the surgical treatment of chronic cavitary osteomyelitis using BAG-S53P4 in a granule and/or putty formulation to assess the clinical outcome and RFs for failure in 6- and 12-month patient follow-up. RESULTS Of the 92 and 78 patients with 6-month and 12-month follow-ups, infection was eradicated in 85.9% and 87.2%, respectively. In the 6-month follow-up, BAG-S53P4 in the granule formulation presented a greater risk of recurrence compared to the bioactive glass putty formulation or combined granules and putty (prevalence ratio (PR) = 3.04; confidence interval 95% [CI95%]: 1.13-10.52) and neoplasia (PR = 5.26; CI95%: 1.17-15.52). In the 12-month follow-up cohort of 78 patients, smoking (PR = 4.0; 95% CI: 1.03-15.52) and nonfermenting GNB infection (PR = 3.87; CI95%: 1.09-13.73) presented a greater risk of recurrence. CONCLUSIONS BAG-S53P4 is a viable option for bone-void filling and the treatment of chronic cavitary osteomyelitis. Formulations of BAG with putty or in combination with granules showed better results.
Collapse
Affiliation(s)
- Adriana Macedo Dell’Aquila
- Infectious Diseases Discipline, Department of Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (A.M.D.); (G.T.C.)
| | - Gabriela Nagy Baldy dos Reis
- Department of Orthopedics and Traumatology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (G.N.B.d.R.); (T.S.D.); (F.B.d.R.)
| | - Gabriel Trova Cuba
- Infectious Diseases Discipline, Department of Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (A.M.D.); (G.T.C.)
| | | | - José Carlos Bongiovanni
- Department of Orthopedics and Traumatology, Universidade de Mogi das Cruzes, Mogi das Cruzes 08780-911, Brazil;
| | - Thomas Stravinskas Durigon
- Department of Orthopedics and Traumatology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (G.N.B.d.R.); (T.S.D.); (F.B.d.R.)
| | - Mauro José Salles
- Infectious Diseases Discipline, Department of Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (A.M.D.); (G.T.C.)
| | - Fernando Baldy dos Reis
- Department of Orthopedics and Traumatology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, Brazil; (G.N.B.d.R.); (T.S.D.); (F.B.d.R.)
| |
Collapse
|
2
|
Hu X, Tang J, Yu H, Yang H, Lu X, Zheng D. Preparation of fish collagen and vancomycin microspheres based on microfluidic technology and its application in osteomyelitis. Front Bioeng Biotechnol 2023; 11:1249706. [PMID: 37915548 PMCID: PMC10616836 DOI: 10.3389/fbioe.2023.1249706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023] Open
Abstract
At present, the clinical treatment of osteomyelitis and osteomyelitis-induced bone defects is challenging, easy to recur, drug toxic side effects, secondary or multiple surgeries, etc. The design of biodegradable composite biomaterials to improve antibiotics in the local precise anti-infection at the same time to complete the repair of bone defects is the current research hot spot. Herein, a composite hydrogel with a double bond at the end (FA-MA) was prepared by affinity addition reaction between fish collagen (FA) and methacrylic anhydride (MA) under photoinitiator initiation conditions, then, FA-MA was amino-activated by EDC/NHC, and vancomycin was attached to FA-MA via amide bonding to prepare FA-MA-Van hydrogels, and finally, the composite hydrogel microspheres were prepared by microfluidic technology. The structure of the hydrogel was confirmed by SEM (elemental analysis), optical microscopy, FTIR, and XPS to confirm the successful preparation. The composite hydrogel microspheres showed the better antimicrobial effect of hydrogel microspheres by bacterial coated plate experiments and SEM morphology results, with the antimicrobial class reaching 99.8%. The results of immunofluorescence staining and X-ray experiments showed that the hydrogel microspheres had a better effect on promoting bone repair. This engineered design of hydrogel microspheres provides clinical significance for treating osteomyelitis at a later stage.
Collapse
Affiliation(s)
- Xiaowu Hu
- Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| | - Jinshan Tang
- Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| | - Huaixi Yu
- Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| | - Hanshi Yang
- Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| | - Xiaoqing Lu
- Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
3
|
Alegrete N, Sousa SR, Peleteiro B, Monteiro FJ, Gutierres M. Local Antibiotic Delivery Ceramic Bone Substitutes for the Treatment of Infected Bone Cavities and Bone Regeneration: A Systematic Review on What We Have Learned from Animal Models. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2387. [PMID: 36984267 PMCID: PMC10056339 DOI: 10.3390/ma16062387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
AIMS the focus of this study is to evaluate if the combination of an antibiotic with a ceramic biomaterial is effective in treating osteomyelitis in an infected animal model and to define which model and protocol are best suited for in vivo experiments of local bone infection treatment. METHODS a systematic review was carried out based on PRISMA statement guidelines. A PubMed search was conducted to find original papers on animal models of bone infections using local antibiotic delivery systems with the characteristics of bone substitutes. Articles without a control group, differing from the experimental group only by the addition of antibiotics to the bone substitute, were excluded. RESULTS a total of 1185 records were retrieved, and after a three-step selection, 34 papers were included. Six manuscripts studied the effect of antibiotic-loaded biomaterials on bone infection prevention. Five articles studied infection in the presence of foreign bodies. In all but one, the combination of an antibiotic with bioceramic bone substitutes tended to prevent or cure bone infection while promoting biomaterial osteointegration. CONCLUSIONS this systematic review shows that the combination of antibiotics with bioceramic bone substitutes may be appropriate to treat bone infection when applied locally. The variability of the animal models, time to develop an infection, antibiotic used, way of carrying and releasing antibiotics, type of ceramic material, and endpoints limits the conclusions on the ideal therapy, enhancing the need for consistent models and guidelines to develop an adequate combination of material and antimicrobial agent leading to an effective human application.
Collapse
Affiliation(s)
- Nuno Alegrete
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana R. Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ISEP-Instituto Superior de Engenharia do Porto, IPP - Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Bárbara Peleteiro
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ITR-Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Gutierres
- FMUP-Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CHUSJ-Centro Hospitalar Universitário S. João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|