1
|
Koido S, Taguchi J, Shimabuku M, Kan S, Bito T, Misawa T, Ito Z, Uchiyama K, Saruta M, Tsukinaga S, Suka M, Yanagisawa H, Sato N, Ohkusa T, Shimodaira S, Sugiyama H. Dendritic cells pulsed with multifunctional Wilms' tumor 1 (WT1) peptides combined with multiagent chemotherapy modulate the tumor microenvironment and enable conversion surgery in pancreatic cancer. J Immunother Cancer 2024; 12:e009765. [PMID: 39384197 PMCID: PMC11474828 DOI: 10.1136/jitc-2024-009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND We aimed to develop a chemoimmunotherapy regimen consisting of a novel Wilms' tumor 1 (WT1) peptide-pulsed dendritic cell (WT1-DC) vaccine and multiagent chemotherapy and to investigate the safety, clinical outcomes, and WT1-specific immune responses of patients with unresectable advanced pancreatic ductal adenocarcinoma (UR-PDAC) who received this treatment. METHODS Patients with UR-PDAC with stage III disease (locally advanced (LA-PDAC; n=6)), stage IV disease (metastatic (M-PDAC; n=3)), or recurrent disease after surgery (n=1) were enrolled in this phase I study. The patients received one cycle of nab-paclitaxel plus gemcitabine alone followed by 15 doses of the WT1-DC vaccine independent of chemotherapy. The novel WT1 peptide cocktail was composed of a multifunctional helper peptide specific for major histocompatibility complex class II, human leukocyte antigen (HLA)-A*02:01, or HLA-A*02:06 and a killer peptide specific for HLA-A*24:02. RESULTS The chemoimmunotherapy regimen was well tolerated. In the nine patients for whom a prognostic analysis was feasible, the clinical outcomes of long-term WT1 peptide-specific delayed-type hypersensitivity (WT1-DTH)-positive patients (n=4) were significantly superior to those of short-term WT1-DTH-positive patients (n=5). During chemoimmunotherapy, eight patients were deemed eligible for conversion surgery and underwent R0 resection (four patients with LA-PDAC, one patient with M-PDAC, and one recurrence) or R1 resection (one patient with M-PDAC), and one patient with LA-PDAC was determined to be unresectable. Long-term WT1-DTH positivity was observed in three of the four patients with R0-resected LA-PDAC. These three patients exhibited notable infiltration of T cells and programmed cell death protein-1+ cells within the pancreatic tumor microenvironment (TME). All patients with long-term WT1-DTH positivity were alive for at least 4.5 years after starting therapy. In patients with long-term WT1-DTH positivity, the percentage of WT1-specific circulating CD4+ or CD8+ T cells that produced IFN-γ or TNF-α was significantly greater than that in patients with short-term WT1-DTH positivity after two vaccinations. Moreover, after 12 vaccinations, the percentages of both circulating regulatory T cells and myeloid-derived suppressor cells were significantly lower in patients with long-term WT1-DTH-positive PDAC than in short-term WT1-DTH-positive patients. CONCLUSIONS Potent activation of WT1-specific immune responses through a combination chemoimmunotherapy regimen including the WT1-DC vaccine in patients with UR-PDAC may modulate the TME and enable conversion surgery, resulting in clinical benefits (Online supplemental file 1). TRIAL REGISTRATION NUMBER jRCTc030190195.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | | | | | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Shintaro Tsukinaga
- Department of Endoscopy, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | | | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Kitamura Y, Konya C. Attitudes, expectations, and lived experiences of cancer patients receiving dendritic cell vaccine therapy in Japan. Asia Pac J Oncol Nurs 2023; 10:100317. [PMID: 38059207 PMCID: PMC10696395 DOI: 10.1016/j.apjon.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/08/2023] [Indexed: 12/08/2023] Open
Abstract
Objective Immunotherapeutic approaches to cancer, such as dendritic cell vaccine therapy, promise to improve survival rate but may present unique challenges to patients. However, there is no research on the lived experiences of cancer patients receiving dendritic cell vaccine therapy. The aim of this study was to explore the attitudes, expectations, and experiences of cancer patients receiving dendritic cell vaccine therapy in Japan. Methods This was an exploratory qualitative study. A descriptive phenomenological approach was used to investigate the experiences of eight advanced-stage cancer patients (median age: 59.5 years). Data were collected between July 2018 and March 2020 using in-depth semi-structured interviews. Data were analyzed according to Colaizzi's seven-step phenomenological strategy, and EQUATOR's Consolidated Criteria for Reporting Qualitative Research (COREQ) guidelines for qualitative studies were followed. Results Four themes emerged from the data analysis: strong concerns about chemotherapy, faith in dendritic cell vaccine therapy, motivation to succeed, and physical and mental changes. The first two themes related to pretreatment attitudes and expectations. The latter two themes expressed participants' experiences during and after therapy. Conclusions Dendritic cell vaccine therapy patients expressed fears about the effects of standard treatment, and hope and uncertainty regarding immunotherapy treatment decisions and efficacy. The findings suggest that such patients require nursing care that includes prevention and reduction of chemotherapy side effects, careful observation of patients' well-being, management of patients' expectations and uncertainty, formation of patient-health care practitioner partnerships, and team medicine.
Collapse
Affiliation(s)
| | - Chizuko Konya
- School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
| |
Collapse
|
3
|
WT1 Pulsed Human CD141+ Dendritic Cell Vaccine Has High Potential in Solid Tumor-Targeted Immunotherapy. Int J Mol Sci 2023; 24:ijms24021501. [PMID: 36675017 PMCID: PMC9864659 DOI: 10.3390/ijms24021501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Dendritic cells (DC) are powerful cells that play critical roles in anti-tumor immunity, and their use in cancer immunotherapy unlocks hidden capabilities as an effective therapeutic. In order to maximize the full potential of DC, we developed a DC vaccine named CellgramDC-WT1 (CDW). CDW was pulsed with WT1, an antigen commonly expressed in solid tumors, and induced with zoledronate to aid DC maturation. Although our previous study focused on using Rg3 as an inducer of DC maturation, problems with quality control and access led us to choose zoledronate as a better alternative. Furthermore, CDW secreted IL-12 and IFN-γ, which induced the differentiation of naïve T cells to active CD8+ T cells and elicited cytotoxic T lymphocyte (CTL) response against cancer cells with WT1 antigens. By confirming the identity and function of CDW, we believe CDW is an improved DC vaccine and holds promising potential in the field of cancer immunotherapy.
Collapse
|
4
|
Different In Vitro-Generated MUTZ-3-Derived Dendritic Cell Types Secrete Dexosomes with Distinct Phenotypes and Antigen Presentation Potencies. Int J Mol Sci 2022; 23:ijms23158362. [PMID: 35955496 PMCID: PMC9368791 DOI: 10.3390/ijms23158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Human dendritic cell (DC) dexosomes were evaluated for their function and preclinical validation for vaccines. Dexosomes are small DC-secreted vesicles that contain absorbing immune signals. Vaccine manufacturing requires a significant number of monocyte-derived DCs (Mo-DCs) from donor blood; thus, Mo-DC dexosomes are expected to serve as novel materials for cancer vaccination. In this study, we characterized a potential dexosome model using immature and mature MUTZ3-derived DCs (M-imIL-4-DC, M-imIFN-DC, M-mIL-4-DC, and M-mIFN-DC) and their dexosomes (M-imIL-4-Dex, M-imIFN-Dex, M-mIL4-Dex, and M-mIFN-Dex). Despite the lack of significant differences in viability, M-mIFN-DC showed a significantly higher level of yield and higher levels of maturation surface markers, such as CD86 and HLA-ABC, than M-mIL-4-DC. In addition, M-mIFN-Dex expressed a higher level of markers, such as HLA-ABC, than M-mIL-4-Dex. Furthermore, M-mIFN-Dex exhibited a higher level of antigen presentation potency, as evaluated using a MART-1 system, than either M-imIFN-Dex or M-mIL-4-Dex. We found that M-mIFN-Dex is one of the four types of MUTZ3-derived DCs that harbor potential immunogenicity, suggesting that DC dexosomes could be useful resources in cancer immunotherapy.
Collapse
|
5
|
Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021; 11:738323. [PMID: 34868932 PMCID: PMC8635494 DOI: 10.3389/fonc.2021.738323] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianfeng Hua
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
6
|
Kawaguchi H, Sakamoto T, Koya T, Togi M, Date I, Watanabe A, Yoshida K, Kato T, Nakamura Y, Ishigaki Y, Shimodaira S. Quality Verification with a Cluster-Controlled Manufacturing System to Generate Monocyte-Derived Dendritic Cells. Vaccines (Basel) 2021; 9:vaccines9050533. [PMID: 34065520 PMCID: PMC8160655 DOI: 10.3390/vaccines9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.
Collapse
Affiliation(s)
- Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
7
|
Interferon-α-Induced Dendritic Cells Generated with Human Platelet Lysate Exhibit Elevated Antigen Presenting Ability to Cytotoxic T Lymphocytes. Vaccines (Basel) 2020; 9:vaccines9010010. [PMID: 33374342 PMCID: PMC7823331 DOI: 10.3390/vaccines9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023] Open
Abstract
Given the recent advancements of immune checkpoint inhibitors, there is considerable interest in cancer immunotherapy provided through dendritic cell (DC)-based vaccination. Although many studies have been conducted to determine the potency of DC vaccines against cancer, the clinical outcomes are not yet optimal, and further improvement is necessary. In this study, we evaluated the potential ability of human platelet lysate (HPL) to produce interferon-α-induced DCs (IFN-DCs). In the presence of HPL, IFN-DCs (HPL-IFN-DCs) displayed high viability, yield, and purity. Furthermore, HPL-IFN-DCs displayed increased CD14, CD56, and CCR7 expressions compared with IFN-DCs produced without HPL; HPL-IFN-DCs induced an extremely higher number of antigen-specific cytotoxic T lymphocytes (CTLs) than IFN-DCs, which was evaluated with a human leukocyte antigen (HLA)-restricted melanoma antigen recognized by T cells 1 (MART-1) peptide. Additionally, the endocytic and proteolytic activities of HPL-IFN-DCs were increased. Cytokine production of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α was also elevated in HPL-IFN-DCs, which may account for the enhanced CTL, endocytic, and proteolytic activities. Our findings suggest that ex-vivo-generated HPL-IFN-DCs are a novel monocyte-derived type of DC with high endocytic and proteolytic activities, thus highlighting a unique strategy for DC-based immunotherapies.
Collapse
|
8
|
Lanao JM, Gutiérrez-Millán C, Colino CI. Cell-Based Drug Delivery Platforms. Pharmaceutics 2020; 13:pharmaceutics13010002. [PMID: 33374912 PMCID: PMC7821918 DOI: 10.3390/pharmaceutics13010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- José M. Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Carmen Gutiérrez-Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence:
| | - Clara I. Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|