1
|
Chavan DD, Thorat VM, Shete AS, Bhosale RR, Patil SJ, Tiwari DD. Current Perspectives on Development and Applications of Cocrystals in the Pharmaceutical and Medical Domain. Cureus 2024; 16:e70328. [PMID: 39463569 PMCID: PMC11513178 DOI: 10.7759/cureus.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the design of pharmaceutical cocrystals has garnered significant attention. The process of cocrystallization offers a remarkable opportunity to develop drug products with enhanced properties such as improved stability, solubility, hygroscopicity, dissolution rate, and bioavailability. This detailed review delves into this evolving area, thereby exploring its relevance in pharmaceutical formulation by defining cocrystals and their practical applications and also by discussing methods for their preparation as well as characterization. It also contrasts traditional and innovative techniques for cocrystal formation. Historically, cocrystals have been synthesized using methods like solvent evaporation, grinding, and slurry techniques; however, each has its own set of limitations under specific conditions. The latest trends in cocrystal formation lean toward more advanced approaches such as spray-drying, hot melt extrusion, and supercritical fluid technology, as well as the cutting-edge technique of laser irradiation. The aim behind developing new methods is not just to address the limitations of traditional cocrystallization techniques but also to streamline the process by introducing simpler steps and enabling a continuous production workflow for cocrystal products. In general, this full-length review article offers a report on various techniques available for the creation of pharmaceutical cocrystals, along with the methods for their evaluation. Moreover, it includes reporting developments and diverse applications of cocrystals along with the commercially available cocrystals in the pharmaceutical as well as medical domains.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
2
|
Wróblewska A, Bugaj K, Łagiewka J, Girek T, Rabai J, Drabowicz J. Attempts to oxidize sulfides under mechanochemical conditions: synthetic and stereochemical aspects. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2193405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Aneta Wróblewska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | - Kamil Bugaj
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | - Jakub Łagiewka
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | - Tomasz Girek
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| | | | - Józef Drabowicz
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
- Jan Dlugosz University in Czestochowa, Częstochowa, Poland
| |
Collapse
|
3
|
Pawlak T, Paluch P, Dolot R, Bujacz G, Potrzebowski MJ. New salts of teriflunomide (TFM) - Single crystal X-ray and solid state NMR investigation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101820. [PMID: 36067621 DOI: 10.1016/j.ssnmr.2022.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
New salts of teriflunomide TFM (drug approved for Multiple Sclerosis treatment) with inorganic counterions: lithium (TFM_Li), sodium (TFM_Na), potassium (TFM_K), rubidium (TFM_Rb), caesium (TFM_Cs) and ammonium (TFM_NH4) were prepared and investigated employing solid state NMR Spectroscopy, Powder X-ray Diffraction PXRD and Single Crystal X-ray Diffraction (SC XRD). Crystal and molecular structures of three salts: TFM_Na (CCDC: 2173257), TFM_Cs (CCDC: 2165288) and TFM_NH4 (CCDC: 2165281) were determined and deposited. Compared to the native TFM, for all crystalline salt structures, a conformational change of the teriflunomide molecule involving about 180-degree rotation of the end group, forming an intramolecular hydrogen bond N-H⋯O is observed. By applying a complementary multi-technique approach, employing 1D and 2D solid state MAS NMR techniques, single and powder X-ray diffraction measurements, as well as the DFT-based GIPAW calculations of NMR chemical shifts for TFM_Na and TFM_Cs allowed to propose structural features of TFM_Li for which it was not possible to obtain adequate material for single crystal X-Ray measurement.
Collapse
Affiliation(s)
- Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Grzegorz Bujacz
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
Shahbaz M, Khan UA, Chaudhary MI, Yousuf S. A new bioactive cocrystal of coumarin-3-carboxylic acid and thiourea: detailed structural features and biological activity studies. Acta Crystallogr C Struct Chem 2022; 78:192-200. [PMID: 35245216 DOI: 10.1107/s205322962200081x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022] Open
Abstract
Cocrystallization is a phenomenon widely used to enhance the biological and physicochemical properties of active pharmaceutical ingredients (APIs). The present study deals with the synthesis of a cocrystal of coumarin-3-carboxylic acid (2-oxochromene-3-carboxylic acid, C10H6O4), a synthetic analogue of the naturally occurring antioxidant coumarin, with thiourea (CH4N2S) using the neat grinding method. The purity and homogeneity of the coumarin-3-carboxylic acid-thiourea (1/1) cocrystal was confirmed by single-crystal X-ray diffraction, FT-IR analysis and thermal stability studies based on differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Detailed geometry analysis via density functional theory (DFT) demonstrated that the 1:1 cocrystal stoichiometry is sustained by N-H...O hydrogen bonding between the amine (-NH2) groups of thiourea and the carbonyl group of coumarin. The synthesized cocrystal exhibited potent antioxidant activity (IC50 = 127.9 ± 5.95 µM) in a DPPH radical scavenger assay in vitro in comparison with the standard N-acetyl-L-cysteine (IC50 = 111.6 ± 2.4 µM). The promising results of the present study highlight the significance of cocrystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - Umair Ahmed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - M Iqbal Chaudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| |
Collapse
|
5
|
Sokolov AV, Vologzhanina AVV, Sudakova TV, Popova YV, Alexandrov EV. Design and Synthesis of Coordination Polymers with Cu(II) and Heterocyclic N-Oxides. CrystEngComm 2022. [DOI: 10.1039/d2ce00139j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relations of coordination network connectivity with coordination properties of heterocyclic N-oxides, Cu(I,II), and co-ligands were discussed based on the comparative analysis of 623 structures extracted from the Cambridge Structural...
Collapse
|
6
|
Wróblewska A, Lauriol G, Mlostoń G, Bantreil X, Lamaty F. Expedient synthesis of NOxy-Heterocyclic Carbenes (NOHC) ligands and metal complexes using mechanochemistry. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Nugrahani I, Jessica MA. Amino Acids as the Potential Co-Former for Co-Crystal Development: A Review. Molecules 2021; 26:3279. [PMID: 34071731 PMCID: PMC8198002 DOI: 10.3390/molecules26113279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A "green method" has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API's physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API's solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.
Collapse
Affiliation(s)
- Ilma Nugrahani
- Pharmacochemistry Department, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia;
| | | |
Collapse
|
8
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
9
|
A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. CRYSTALS 2021. [DOI: 10.3390/cryst11050463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, many commercial drugs have poor solubility and bioavailability. Cocrystals are formulated to modulate active pharmaceutical ingredients’ properties with improved solubility, dissolution, and bioavailability compared to their pristine individual components in the pharmaceutical industry. Nano-cocrystals, crystals in the nano range, can further enhance these properties because of not only the cocrystal structure, but also the large surface to volume ratio of nanocrystals. Even though there are many studies on cocrystals, the research of pharmaceutical nano-cocrystals is still in the initial stage. Thus, it is necessary to conduct a systematic study on pharmaceutical nano-cocrystals. In this review, the possible preparation approaches of nano-cocrystals have been reported. To have a comprehensive understanding of nano-cocrystals, some analytical techniques and characterizations will be discussed in detail. In addition, the feasible therapeutic application of nano-cocrystals will be presented. This work is expected to provide guidance to develop new nano-cocrystals with commercial value in the pharmaceutical industry.
Collapse
|
10
|
Dudek MK, Śniechowska J, Wróblewska A, Kaźmierski S, Potrzebowski MJ. Cocrystals "Divorce and Marriage": When a Binary System Meets an Active Multifunctional Synthon in a Ball Mill. Chemistry 2020; 26:13264-13273. [PMID: 32567718 DOI: 10.1002/chem.202002238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 11/06/2022]
Abstract
A well-defined and stable "AB" binary system in the presence of "C" a crystalline synthon ground in a ball mill undergoes selective transformation in the solid state according to the equation AB+C→AC+B. When the amount of C is increased two times then the equation AB+2C→AC+BC is valid. The other variants are more complex. The pathway BC+A is allowed and leads to the AC and B products. The pathway AC+B is not preferred, and no transformation is observed. These non-obvious correlations were observed for cocrystal of barbituric acid (BA):thiobarbituric acid (TBA) recently reported by Shemchuk et al. (Chem. Commun. 2016, 52, 11815-11818) in the presence of 1-hydroxy-4,5-dimethyl-imidazole 3-oxide (HIMO). This synthon shows high affinity for the BA0.5 TBA0.5 cocrystal as well for its individual components, BA and TBA. Single-quantum, double-quantum (SQ-DQ) 2D 1 H very fast MAS NMR with a spinning rate of 60 kHz was employed as a basic and most diagnostic tool for the study of cocrystals transformations. Analysis of the experimental data was supported by theoretical calculations, including computation of the stabilization energy, Estab , defined as the energy difference between the energy of a co-crystal and the sum of the energies of particular components in the respective stoichiometric ratios. Two mechanisms of synthon replacement have been proposed. Pathway 1 assumes a concerted mechanism of substitution. In this approach, synthon attack is synchronized in time with the departure of one of the components of the binary system. Pathway 2 implies a non-concerted process, with an intermediate stage in which three separate components are present. Evidence suggesting a preference for Pathway 2 is shown.
Collapse
Affiliation(s)
- Marta K Dudek
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Justyna Śniechowska
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Aneta Wróblewska
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Sławomir Kaźmierski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Marek J Potrzebowski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| |
Collapse
|
11
|
Erxleben A. Cocrystal Applications in Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12090834. [PMID: 32882805 PMCID: PMC7559296 DOI: 10.3390/pharmaceutics12090834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, H91TK33 Galway, Ireland;
- Synthesis and Solid State Pharmaceutical Centre (SSPC), V94T9PX Limerick, Ireland
| |
Collapse
|