1
|
Ramos-Valle A, Kirst H, Fanarraga ML. Biodegradable silica nanoparticles for efficient linear DNA gene delivery. Drug Deliv 2024; 31:2385376. [PMID: 39101224 DOI: 10.1080/10717544.2024.2385376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO2 resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.
Collapse
Affiliation(s)
- Andrés Ramos-Valle
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Henning Kirst
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
2
|
Sibgatullina G, Ramazanova I, Salnikov V, Stepanov A, Voloshina A, Sapunova A, Mustafina A, Petrov K, Samigullin D. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Histochem Cell Biol 2024; 161:507-519. [PMID: 38597938 DOI: 10.1007/s00418-024-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia.
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx St., Kazan, 420111, Russia.
| |
Collapse
|
3
|
Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2016. [PMID: 35745355 PMCID: PMC9228019 DOI: 10.3390/nano12122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.
Collapse
Affiliation(s)
- Amirsadra Ahmadi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Moses Sokunbi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Trisha Patel
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Zeeshan Ahmad
- Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| |
Collapse
|
4
|
Tiburcius S, Krishnan K, Jose L, Patel V, Ghosh A, Sathish CI, Weidenhofer J, Yang JH, Verrills NM, Karakoti A, Vinu A. Egg-yolk core-shell mesoporous silica nanoparticles for high doxorubicin loading and delivery to prostate cancer cells. NANOSCALE 2022; 14:6830-6845. [PMID: 35441642 DOI: 10.1039/d2nr00783e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporous silica-based nanoparticles (MSNs) have gained rapid interest as a drug delivery system (DDS) and demonstrated their versatility in delivering drugs for the treatment of various cancers. However, the drug loading efficiency of MSNs is low and is usually improved by improving textural properties through complicated synthesis methods or by post synthesis modification of the surface that can result in the loss of surface area and modify its drug release properties. In this study, we report a direct single-step synthesis of MSNs with a unique egg-yolk core-shell morphology, large pore volume and a hydrophilic surface, decorated with nitrogen rich surface functionalities for increasing its drug loading capacity. This combination of excellent textural properties and surface functionalisation was achieved by a simple soft templating method using dual surfactants and the silica sources assisted by employing either triethylamine (TEA) or triethanolamine (TEO) as the hydrolysis agent. The morphology and well-ordered mesoporous structure can simply be tuned by changing the pH of the synthesis medium that affects the self-assembly mechanism of the micelles. HRTEM image of samples clearly revealed an egg-yolk core-shell morphology with a thin mesoporous silica shell. The optimised MSN samples synthesized at a pH of 11 using either TEA or TEO depicted a higher doxorubicin (Dox) loading capacity of 425 μg mg-1 and 481 μg mg-1 respectively, as compared to only 347 μg mg-1 for MSN samples due to the uniform distribution of nitrogen functionalities. The anticancer activity of Dox loaded MSNs evaluated in two different prostate cancer cell lines (PC-3 and LNCaP) showed a higher cytotoxicity of the drug loaded on optimised MSN samples as compared to pristine MSNs without affecting the cellular uptake of the particles. These results suggest that the unique single-step synthesis and functionalisation method resulted in successfully achieving higher drug loading in egg-yolk core-shell nitrogen functionalised MSNs and could be implemented as an effective carrier of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Linta Jose
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Vaishwik Patel
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Judith Weidenhofer
- Hunter Medical Research Institute (HMRI), New Lambton Heights, 2305, NSW, Australia
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
5
|
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12:1297. [PMID: 35079042 PMCID: PMC8789857 DOI: 10.1038/s41598-022-05301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain.
| | - Josefa Álvarez-Fuentes
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Mercedes Fernández-Arévalo
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Lucía Martín-Banderas
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| |
Collapse
|
6
|
Design of Polymeric and Biocompatible Delivery Systems by Dissolving Mesoporous Silica Templates. Int J Mol Sci 2020; 21:ijms21249573. [PMID: 33339139 PMCID: PMC7765674 DOI: 10.3390/ijms21249573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023] Open
Abstract
There are many nanoencapsulation systems available today. Among all these, mesoporous silica particles (MSPs) have received great attention in the last few years. Their large surface-to-volume ratio, biocompatibility, and versatility allow the encapsulation of a wide variety of drugs inside their pores. However, their chemical instability in biological fluids is a handicap to program the precise release of the therapeutic compounds. Taking advantage of the dissolving capacity of silica, in this study, we generate hollow capsules using MSPs as transitory sacrificial templates. We show how, upon MSP coating with different polyelectrolytes or proteins, fully customized hollow shells can be produced. These capsules are biocompatible, flexible, and biodegradable, and can be decorated with nanoparticles or carbon nanotubes to endow the systems with supplementary intrinsic properties. We also fill the capsules with a fluorescent dye to demonstrate intracellular compound release. Finally, we document how fluorescent polymeric capsules are engulfed by cells, releasing their encapsulated agent during the first 96 h. In summary, here, we describe how to assemble a highly versatile encapsulation structure based on silica mesoporous cores that are completely removed from the final polymeric capsule system. These drug encapsulation systems are highly customizable and have great versatility as they can be made using silica cores of different sizes and multiple coatings. This provides capsules with unique programmable attributes that are fully customizable according to the specific needs of each disease or target tissue for the development of nanocarriers in personalized medicine.
Collapse
|
7
|
Hevia LG, Fanarraga ML. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. J Nanobiotechnology 2020; 18:181. [PMID: 33317574 PMCID: PMC7734827 DOI: 10.1186/s12951-020-00742-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Microtubules and carbon nanotubes (CNTs), and more particularly multi-walled CNTs (MWCNTs), share many mechanical and morphological similarities that prompt their association into biosynthetic tubulin filaments both, in vitro and in vivo. Unlike CNTs, microtubules are highly dynamic protein polymers that, upon interaction with these nanomaterials, display enhanced stability that has critical consequences at the cellular level. Among others, CNTs prompt ectopic (acentrosomal) microtubule nucleation and the disassembly of the centrosome, causing a dramatic cytoskeletal reorganization. These changes in the microtubule pattern trigger the generation of ineffective biomechanical forces that result in migration defects, and ultimately in spindle-assembly checkpoint (SAC) blockage and apoptosis. In this review, we describe the molecular mechanism involved in the intrinsic interference of CNTs with the microtubule dynamics and illustrate the consequences of this effect on cell biomechanics. We also discuss the potential application of these synthetic microtubule-stabilizing agents as synergetic agents to boost the effect of classical chemotherapy that includes spindle poisons (i.e. paclitaxel) or DNA interfering agents (5-fluorouracil)-, and list some of the advantages of the use of MWCNTs as adjuvant agents in preventing cell resistance to chemotherapy.![]()
Collapse
Affiliation(s)
- Lorena García Hevia
- Nanomedicine Group, Valdecilla Research Institute-IDIVAL, University of Cantabria, Herrera Oria s/n, 39011, Santander, Spain
| | - Mónica L Fanarraga
- Nanomedicine Group, Valdecilla Research Institute-IDIVAL, University of Cantabria, Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|