1
|
Somogyi Škoc M, Juran J, Rezić I. Effect of Sterilization Methods on Chemical and Physical-Mechanical Properties of Cotton Compresses. Molecules 2024; 29:3541. [PMID: 39124944 PMCID: PMC11314603 DOI: 10.3390/molecules29153541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of this work was to determine the changes in the chemical and physical-mechanical properties of gauze compresses under the influence of various sterilizations. Gauze compresses are made of cotton; therefore, all methods used focused on cotton. The methods used to test possible damage to cotton materials (pH value (pH paper, KI starch paper), yellowing test, Fehling reaction, reaction to the formation of Turnbull blue (Berlin blue), microscopic staining with methylene blue and swelling reaction with Na-zincate) did not show that the sterilizations affected the cotton compresses. The morphological characteristics were examined with a scanning electron microscope (SEM). The SEM images showed that there were no morphological changes in the cotton fibers. FTIR-ATR spectroscopy revealed that the sterilization processes did not alter the characteristic bands of the cotton. The length of the macromolecules was increased (DP), showing that the sterilization processes had affected the cotton. The results of the wet strength test followed. The samples showed values below 100%, with the exception of two samples. It is known from theory that the relative wet strength is less than 100% when the material is damaged. The t-test performed on the strength results showed that the p-value was greater than 0.05 for all samples tested, with the exception of one sample. The degree of swelling capacity was determined, with non-sterilized samples having the highest capacity, followed by samples sterilized with ethylene oxide and then samples sterilized by steam sterilization. The results obtained are a contribution to the innovation of the topic of this work and a scientific confirmation for manufacturers and anyone interested in the influence of the sterilization process on natural fibers (cotton).
Collapse
Affiliation(s)
- Maja Somogyi Škoc
- Department of Materials, Fibres and Textile Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Jana Juran
- Department of Materials, Fibres and Textile Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Edwards JV, Prevost NT, Hinchliffe DJ, Nam S, Chang S, Hron RJ, Madison CA, Smith JN, Poffenberger CN, Taylor MM, Martin EJ, Dixon KJ. Preparation and Activity of Hemostatic and Antibacterial Dressings with Greige Cotton/Zeolite Formularies Having Silver and Ascorbic Acid Finishes. Int J Mol Sci 2023; 24:17115. [PMID: 38069435 PMCID: PMC10706952 DOI: 10.3390/ijms242317115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The need for prehospital hemostatic dressings that exert an antibacterial effect is of interest for prolonged field care. Here, we consider a series of antibacterial and zeolite formulary treatment approaches applied to a cotton-based dressing. The design of the fabric formulations was based on the hemostatic dressing TACGauze with zeolite Y incorporated as a procoagulant with calcium and pectin to facilitate fiber adherence utilizing silver nanoparticles, and cellulose-crosslinked ascorbic acid to confer antibacterial activity. Infra-red spectra were employed to characterize the chemical modifications on the dressings. Contact angle measurements were employed to document the surface hydrophobicity of the cotton fabric which plays a role in the contact activation of the coagulation cascade. Ammonium Y zeolite-treated dressings initiated fibrin equal to the accepted standard hemorrhage control dressing and showed similar improvement with antibacterial finishes. The antibacterial activity of cotton-based technology utilizing both citrate-linked ascorbate-cellulose conjugate analogs and silver nanoparticle-embedded cotton fibers was observed against Staphylococcus aureus and Klebsiella pneumoniae at a level of 99.99 percent in the AATCC 100 assay. The hydrogen peroxide levels of the ascorbic acid-based fabrics, measured over a time period from zero up to forty-eight hours, were in line with the antibacterial activities.
Collapse
Affiliation(s)
- J. Vincent Edwards
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Nicolette T. Prevost
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Doug J. Hinchliffe
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Sunghyun Nam
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - SeChin Chang
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Rebecca J. Hron
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Crista A. Madison
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Jade N. Smith
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA; (N.T.P.); (D.J.H.); (S.N.); (S.C.); (R.J.H.); (C.A.M.); (J.N.S.)
| | - Chelsie N. Poffenberger
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.N.P.); (M.M.T.); (K.J.D.)
| | - Michelle M. Taylor
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.N.P.); (M.M.T.); (K.J.D.)
| | - Erika J. Martin
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Kirsty J. Dixon
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.N.P.); (M.M.T.); (K.J.D.)
| |
Collapse
|
3
|
Yu X, Han F, Feng X, Wang X, Zhu Y, Ye C, Ji M, Chen Z, Tao R, Zhou Z, Wan F. Sea Cucumber-Inspired Aerogel for Ultrafast Hemostasis of Open Fracture. Adv Healthc Mater 2023; 12:e2300817. [PMID: 37340763 DOI: 10.1002/adhm.202300817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The symptomatic management of hemorrhagic shock complicated by open fractures is a great challenge, because it is also complicated by complex wound bleeding, bacterial infection, and bone defects. Inspired by the water absorption and cross-sectional microstructure of sea cucumbers, in this study, a new sea cucumber-like aerogel (GCG) is proposed. Its aligned porous structure and composition can stop bleeding rapidly and effectively with a blood clotting index of 3.73 ± 1.8%. More importantly, the data of in vivo hemostasis test in an amputating rat tail hemostatic model (15.69 ± 2.45 s, 26.95 ± 8.43 mg) and liver puncture bleeding model (23.77 ± 2.68 s, 36.22 ± 16.92 mg) also indicate the excellent hemostatic performance of GCG. In addition, GCG also shows a significant inhibitory effect on S. aureus and E. coli, which can prevent the occurrence of postoperative osteomyelitis. Not only that, after filling in the bone defect, it is shown that this GCG aerogel completely degrades eight weeks after surgery and induces new bone ingrowth, achieving functional regeneration after hemostasis of an open fracture defect. Generally, because of its combination of hemostatic, antibacterial, and osteogenic activities, this new aerogel is a promising option for open fractures treatment.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fei Han
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xian Feng
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Zhu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Cong Ye
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Minrui Ji
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhichao Chen
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ran Tao
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhenyu Zhou
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fuyin Wan
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Edwards JV, Prevost NT, Cintron MS. A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings. J Funct Biomater 2023; 14:jfb14050255. [PMID: 37233365 DOI: 10.3390/jfb14050255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
The need for affordable effective prehospital hemostatic dressings to control hemorrhage has led to an increased interest in new dressing design approaches. Here we consider the separate components of fabric, fiber, and procoagulant nonexothermic zeolite-based formulations on design approaches to accelerated hemostasis. The design of the fabric formulations was based on incorporation of zeolite Y as the principal procoagulant, with calcium and pectin to adhere and enhance the activity. Unbleached nonwoven cotton when combined with bleached cotton displays enhanced properties related to hemostasis. Here, we compare sodium zeolite with ammonium zeolite formulated on fabrics utilizing pectin with pad versus spray-dry-cure and varied fiber compositions. Notably, ammonium as a counterion resulted in shorter times to fibrin and clot formation comparable to the procoagulant standard. The time to fibrin formation as measured by thromboelastography was found to be within a range consistent with modulating severe hemorrhage control. The results indicate a correlation between fabric add-on and accelerated clotting as measured by both time to fibrin and clot formation. A comparison between the time to fibrin formation in calcium/pectin formulations and pectin alone revealed an enhanced clotting effect with calcium decreasing by one minute the time to fibrin formation. Infra-red spectra were employed to characterize and quantify the zeolite formulations on the dressings.
Collapse
Affiliation(s)
- J Vincent Edwards
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| | - Nicolette T Prevost
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| | - Michael Santiago Cintron
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| |
Collapse
|
5
|
Ascorbic Acid as an Adjuvant to Unbleached Cotton Promotes Antimicrobial Activity in Spunlace Nonwovens. Int J Mol Sci 2022; 23:ijms23073598. [PMID: 35408961 PMCID: PMC8998428 DOI: 10.3390/ijms23073598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
The development of affordable, effective, and environmentally friendly barrier fabrics is a current goal in antimicrobial textile development. The discovery of new routes to achieve non-toxic naturally occurring molecules with antimicrobial activity is of interest in the development of materials that promote wound healing, improve hygiene, and offer protection against nosocomial infection. Highly cleaned and sterile unbleached cotton has constituents that produce hydrogen peroxide at levels commensurate with those that favor cell signaling in wound healing. Here, we show the antimicrobial and antiviral properties of spunlaced griege cotton-containing nonwovens treated with ascorbic acid formulations. The mechanism of action occurs through the promotion of enhanced hydrogen peroxide activity. The levels of hydrogen peroxide activity afford antimicrobial activity against Gram-negative and Gram-positive bacteria and antiviral activity against MS2 bacteriophages. Spun-bond nonwoven unbleached cotton was treated with ascorbic acid using traditional pad-dry-cure methods. An assessment of antibacterial and antiviral activity against Staphylococcus aureus, Klebsiella pneumoniae, and MS2 bacteriophages with the AATCC 100 test method showed a 99.99% inhibitory activity. An approach to the covalent attachment of ascorbic to cellulose through citric acid crosslinking chemistry is also discussed. Thus, a simple, low-cost approach to antimicrobial and antiviral cotton-based nonwovens applicable to dressings, nosocomial barrier fabrics, and face masks can be adopted by combining ascorbic acid with spunlace greige cotton nonwoven fabrics.
Collapse
|
6
|
Hu P, Chiarini A, Wu J, Freddi G, Nie K, Armato U, Prà ID. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. BURNS & TRAUMA 2021; 9:tkab003. [PMID: 34212056 PMCID: PMC8240536 DOI: 10.1093/burnst/tkab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy
| | - Jun Wu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Giuliano Freddi
- Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy
| | - Kaiyu Nie
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
7
|
Edwards JV, Prevost N, Yager D, Nam S, Graves E, Santiago M, Condon B, Dacorta J. Antimicrobial and Hemostatic Activities of Cotton-Based Dressings Designed to Address Prolonged Field Care Applications. Mil Med 2021; 186:116-121. [PMID: 33499453 DOI: 10.1093/milmed/usaa271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Developing affordable and effective hemostatic and antimicrobial wound dressings for prolonged field care (PFC) of open wounds is of interest to prevent infection, to prevent sepsis, and to conserve tissue viability. The need for an effective hemostatic dressing that is also antimicrobial is required of a hemostatic dressing that can be left in place for extended periods (days). This is particularly important in light of the existence of pathogens that have coagulopathy properties. Thus, dressings that provide effective hemostasis and reduction in the frequency of dressing changes, whereas exerting robust antimicrobial activity are of interest for PFC. Highly cleaned and sterile unbleached cotton has constituents not found in bleached cotton that are beneficial to the hemostatic and inflammatory stages of wound healing. Here, we demonstrate two approaches to cotton-based antimicrobial dressings that utilize the unique components of the cotton fiber with simple modification to confer a high degree of hemostatic and antimicrobial efficacy. METHODS Spun bond nonwoven unbleached cotton was treated using traditional pad dry cure methods to add ascorbic acid, zeolite (NaY) with pectin, calcium chloride, and sodium carbonate/calcium chloride. Similarly, nanosilver-embedded cotton fiber was blended with pristine cotton fibers at various weight ratios to produce hydroentangled nonwoven fabrics. The resulting treated fabrics were assessed for hemostasis using thromboelastographic clotting assays and antimicrobial activity utilizing American Association of Textile Chemists and Colorists 100. RESULTS Zeolite-containing dressings possessed significant hemostatic activity, whereas ascorbic acid- and silver-containing dressings reduced Gram-positive and Gram-negative organism numbers by several logs. CONCLUSION Based on this study, a multilayered hemostatic dressing with antimicrobial properties is envisioned. This dressing would be safe, would be economical, and have a stable shelf-life that would be conducive for using PFC.
Collapse
Affiliation(s)
- J Vincent Edwards
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Nicolette Prevost
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Dorne Yager
- Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sunghyun Nam
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Elena Graves
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Michael Santiago
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Brian Condon
- Southern Regional Research Center - ARS, USDA, New Orleans, LA 70124, USA
| | - Joseph Dacorta
- Research & Development, H&H Medical, Inc., Williamsburg, VA 23040, USA
| |
Collapse
|
8
|
Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton. Mar Drugs 2021; 19:md19040220. [PMID: 33921176 PMCID: PMC8071530 DOI: 10.3390/md19040220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled bleeding is the main cause of mortality from trauma. Collagen has been developed as an important hemostatic material due to its platelet affinity function. A bath sponge skeleton is rich in collagen, also known as spongin. To understand the hemostatic effect of spongin, spongin materials, SX, SFM and SR were prepared from the bath sponge Spongia officinalis, and hemostatic experiments were performed. The SX, SFM and SR were significantly better than the positive control, type I collagen, in shortening the whole blood clotting time in vitro and hemostasis upon rat tail amputation. In a hemostatic experiment of rabbit common carotid artery injury, the hemostatic time and 3 h survival rate of the SFM group were 3.00 ± 1.53 min and 100%, respectively, which are significantly better than those of the commercial hemostat CELOX-A (10.33 ± 1.37 min and 67%, respectively). Additionally, the SFM showed good coagulation effects in platelet-deficient blood and defibrinated blood, while also showing good biocompatibility. Through a variety of tests, we speculated that the hemostatic activity of the SFM is mainly caused by its hyperabsorbency, high affinity to platelets and high effective concentration. Overall, the SFM and spongin derivates could be potential hemostatic agents for uncontrolled bleeding and hemorrhagic diseases caused by deficiency or dysfunction of coagulation factors.
Collapse
|